

ADMX Status

38th International Conference on High Energy Physics August 4, 2016

Ian Stern University of Florida

Strong CP Problem

The Standard Model predicts QCD violates CP

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \frac{\theta g^2}{16\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + \cdots$$

Neutron electric dipole moment

$$T\left(\begin{array}{c}\mu_{n}\downarrow\downarrow d_{n}\\ |n\rangle\\ |1\rangle\end{array}\right) = \bigcup_{-\mu_{n}\downarrow 1}^{\downarrow} d_{n} \neq |n\rangle$$

 Experimental results have found no neutron electric dipole moment (PRL 97 131801)

$$|d_n| < 2.9 \text{ x } 10^{-26} \text{ e-cm}$$

Peccei–Quinn Solution

Peccei and Quinn hidden broken U(1) symmetry (PRL 38 1440)

 $\mathcal{L}_{eff} = \mathcal{L}_{\overline{QCP}} G^{\underline{a}}_{\overline{\mu}\nu} G^{\underline{a}}_{\underline{\mu}\nu} G^{\underline{a}}_{\mu\nu} G^{\underline{a}}_$

Weinberg and Wilczek pseudo-Nambu Goldstone bos pn

(PRL 40 223 & PRL 40 279)

Axion Dark Matter Candidate

- Naturally meets the "requirements" of dark matter (PRD 86 010001)
 - feeble interactions with normal matter and radiation
 - strong gravitational interactions
 - cold
 - long-lived
 - abundant
- Elegant solution
 - no fine-tuning
 - mass bound

no dark matter specific theory added

Axion Dark Matter Theory

UF FLORIDA

Axion Detection

- The axion couples very weakly to normal particles.
 - μeV-mass axions would live around 10⁵⁰ seconds.
- Lifetime is greatly decrease in static magnetic field via the inverse Primakoff effect. (PRL 51 1415)

$$\mathcal{L}_{\alpha\gamma\gamma\gamma} = g_{a\gamma\gamma} a E \cdot B_0$$

Microwave Cavity (Haloscope) Detectors

UF FLORIDA

Axion Detector Results

UF FLORIDA

Axion Dark Matter eXperiment (ADMX)

Cavity Tuning

UF FLORIDA

Data taking cadence: Tune rods, measure frequency, acquire power spectrum, repeat.

SQUID-based amplifier

- SQUIDs have been measured with T_N ~ 50 mK
 - Near quantum—limited noise
- ~15-20 dB gain

UF FLORIDA

Niobium SQUID amplifier

Receiver Chain

ADMX Published Limits

Current Upgrade: Dilution Refrigerator

 $T \approx 200 \text{ mK} \text{ (target } 100 \text{ mK)}$

UF FLORIDA

Current Upgrade: Multi-channel Cavity

UNIVERSITY of

Current Upgrade: "Sidecar" Cavity

Current Upgrade: Tunable Amplifiers

Current Status

- Dil. fridge installed and operational
- 3 search channels operational and verified
- Electronics in final commissioning phase
- Science data taking will begin in August!!
 - Most sensitive detector
 - New frequency searches

ADMX Gen 2

- Search for dark matter axions down to DFSZ coupling in frequency range of ~1-10 GHz
 - New microwave cavity technology research
 - New electronics development
 - Upgraded magnet

Current R&D: Multi-cavity Searches

UF FLORIDA

Pound locking system

Current R&D: Exotic Cavity Development

Current R&D: Mode Map and Simulation

Current R&D: Mode Identification

Current R&D: Electronics and Magnet

Tunable SQUID Amps

JPA Advancements

Stronger Magnets

UF FLORIDA

Piezoelectric Drive

Gen 2 Cavity Baseline

- 1-2 GHz: 4 frequency-locked cavities
 - R ≈ 8 cm
- 2-4 GHz: 16 frequency-locked cavities
 - R ≈ 4 cm
- 4-6 GHz: 32 frequency-locked cavities
 - R ≈ 3 cm
- 6-8 GHz: photonic band-gap (square) cavity
 - ~14 cm X 14 cm
- 8-10 GHz: photonic band-gap cavity
 - TBD

Projected Sensitivity

Conclusion

- ADMX is about to begin operating with the detector's greatest sensitivity to axion dark matter in a plausible mass range.
 - New mass/frequency ranges will be explored.
 - Significantly more discovery potential than previous dark matter axion searches.
- ADMX is rapidly advancing in technology to expand the detector's capabilities to explore higher mass regions with equivalent sensitivity.
 - Plan to search up to 1 decade in 5+ years.

ADMX Collaboration

- Collaboration Team
 - University of Washington
 - University of Florida
 - University of California, Berkeley
 - Lawrence Livermore National Laboratory
 - Fermilab
 - Pacific Northwest National Laboratory
 - Los Alamos National Lab
 - National Radio Astronomy Observatory

Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation, and the Lawrence Livermore National Laboratory LDRD program.

