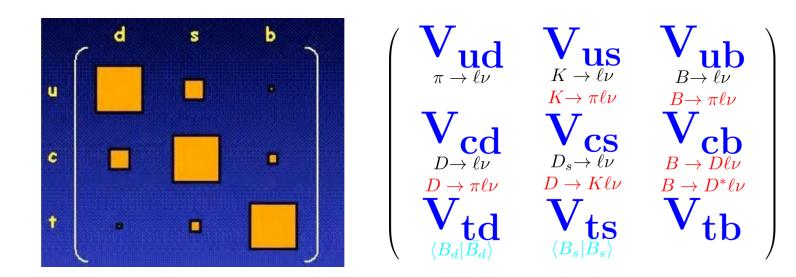
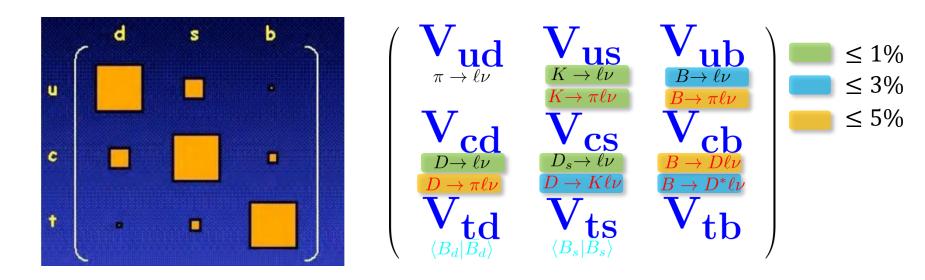

|Vub| and |Vcb| from unquenched Lattice QCD

Daping Du (covered by Ran Zhou)


(Fermilab/MILC Collaborations)

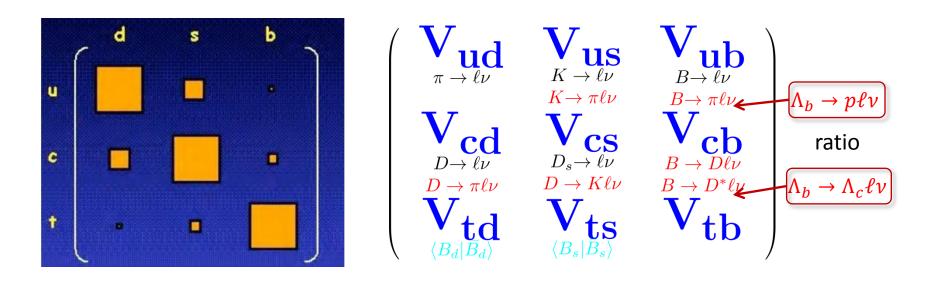
ICHEP 2016, Chicago

- Quantitative understanding of non-perturbative effects is becoming crucial for SM calculations and beyond. Lepage, Mackenzie & Peskin, 1404.0319
- Theoretical precision is a key to indirect searches for the TeV+ scale NP
- These can be/are being provided by Lattice QCD:
 - Same free parameters as in SM, but with a lattice regulator
 - A well-tested and mature method for "simple quantities": A. EI-Khadra CKM2014
 mass spectra, decay constants,
 weak matrix elements (form factors)...
 - Calculations are **systematically improvable**:
 - Harness the power of hardware/software
 - Calculations can be well planned!
 - Active in many fronts:
 - Multiple hadrons (non-leptonic decays)
 - Finite temperature and density
 - QED+QCD
 - **q-2**

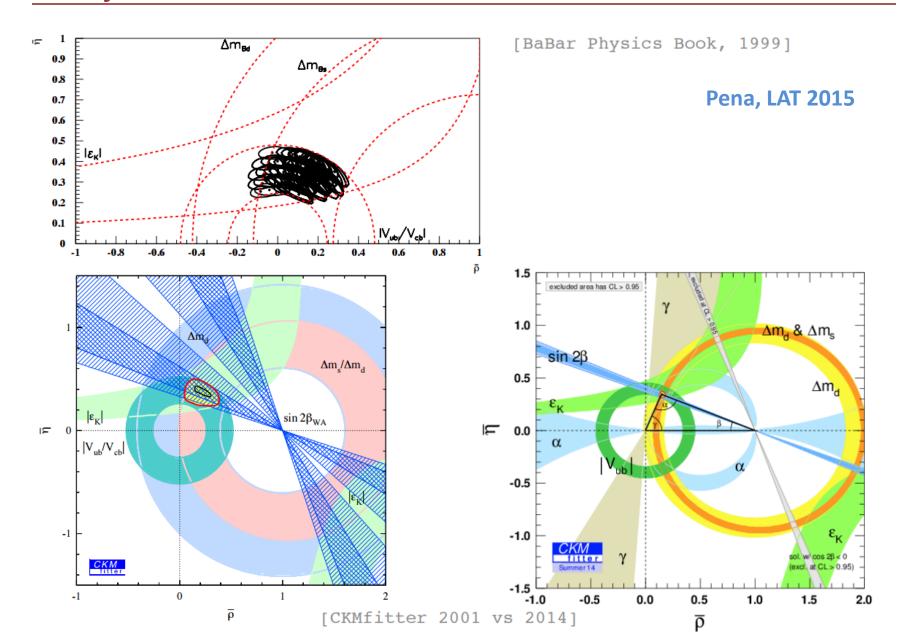

LQCD provides the needed hadronic matrix elements with few-percent level precision, for the exclusive determinations of CKM parameters

(Experiment) = $(known factor) \times (CKM element) \times (Hadronic matrix element)$

$$\frac{d\Gamma(P \to P'\ell\nu)/dq^2}{\text{known factor}} = |V_{xy}|^2 |\langle P'| \xrightarrow{\downarrow} |P\rangle|^2$$

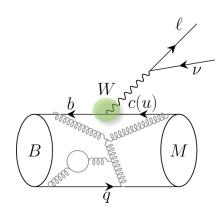

LQCD provides the needed hadronic matrix elements with few-percent level precision, for the exclusive determinations of CKM parameters

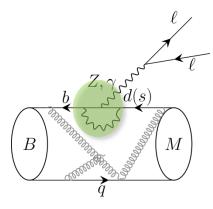
(Experiment) = $(known factor) \times (CKM element) \times (Hadronic matrix element)$


$$\frac{d\Gamma(P \to P'\ell\nu)/dq^2}{\text{known factor}} = |V_{xy}|^2 |\langle P'| \xrightarrow{\downarrow} |P\rangle|^2$$

LQCD provides the needed hadronic matrix elements with few-percent level precision, for the exclusive determinations of CKM parameters

(Experiment) = $(known factor) \times (CKM element) \times (Hadronic matrix element)$


$$\frac{d\Gamma(P \to P'\ell\nu)/dq^2}{\text{known factor}} = |V_{xy}|^2 |\langle P'| \xrightarrow{\downarrow} |P\rangle|^2$$

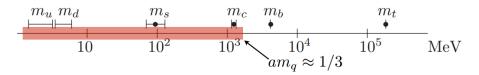

$B \rightarrow (P, V)$ form factors

 \rightarrow (P,V) matrix elements: q^2 -dependence is encoded by form factors

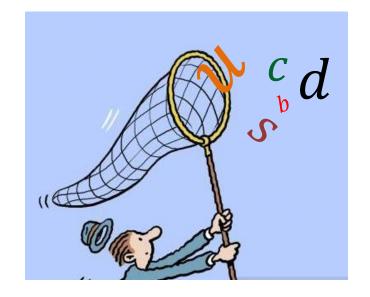
$$|\langle P(V)| \longrightarrow |B\rangle| \longrightarrow \text{form factors } f_i(q^2)$$

$$W_{C(u)} = f_{+}(q^{2}) \left(p_{B}^{\mu} + p_{P}^{\mu} - \frac{M_{B}^{2} - M_{P}^{2}}{q^{2}}q^{\mu}\right) + f_{0}(q^{2}) \frac{M_{B}^{2} - M_{P}^{2}}{q^{2}}q^{\mu}$$

$$\langle P(p_P)|i\bar{q}\sigma^{\mu\nu}b|B(p_B)\rangle = \frac{2}{M_B + M_P}(p_B^{\mu}p_P^{\nu} - p_B^{\nu}p_P^{\mu})f_T(q^2),$$


$$\langle V|\bar{q}\sigma^{\mu\nu}b|B\rangle, \langle V|\bar{q}\gamma^5\sigma^{\mu\nu}b|B\rangle$$
 : $T_1(q^2), T_2(q^2), T_3(q^2)$

Heavy (valence) quarks on the lattice

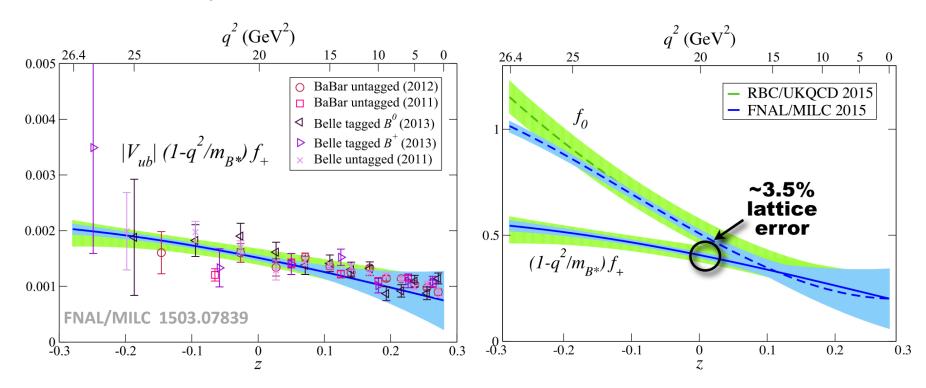

Heavy quark discretization error

$$(\alpha_s)^k (am_h)^n$$

b-quark is too heavy to satisfy $am_h < 1$

Match to EFT to suppress HQ discretization error

- Different approaches:
 - NRQCD (HPQCD)
 - Relativistic HQ (Fermilab/MILC, RBC/UKQCD, Tsukuba)
 - HQET (Alpha)
 - Extrapolation from charm quark: (HPQCD, Fermilab/MILC, twWilson...)


Lattice form factors for *B* decays

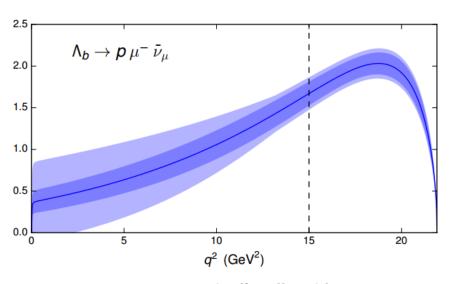
For flavor-changing charged currents

form factor	simulated q^2	ensemble/HQ	uncertainty	Ref.
$f_{+,0}^{B \to \pi \ell \nu}$	$[17 { m GeV}^2, \sim q_{ m max}^2]$	MILC/Fermilab	$\sim \! 4\%$	FNAL/MILC 1503.07839
$f_{+,0}^{B \to \pi \ell \nu}$	q_{\max}^2	MILC/NRQCD	${\sim}3\%$	HPQCD 1510.07446
$f_{+,0}^{B \to \pi \ell \nu}$	$q^2 = 21.22 \text{GeV}^2$	ALPHA/Wilson		ALPHA PLB.2016.03.088
$f_{+,0}^{B_{(s)}\to\pi(K)\ell\nu}$	$[19 {\rm GeV}^2, \sim q_{\rm max}^2]$	DW/RHQ	8-14%(5-7%)	$RBC/UKQCD\ 1501.05373$
$f_{+,0}^{B_s o K\ell u}$	$[17 { m GeV}^2, \sim q_{ m max}^2]$	$\mathrm{MILC/NRQCD}$	3.5%	HPQCD 1406.2279
$f_{+,0}^{B \stackrel{ ightarrow}{ ightarrow} D\ell u}$	$[9.5 \mathrm{GeV}^2, q_{\mathrm{max}}^2]$	$\mathrm{MILC/NRQCD}$	${\sim}5\%$	$HPQCD\ 1505.03925$
$f_{+,0}^{B \stackrel{ ightarrow}{ ightarrow} D\ell u}$	$[8.5 \mathrm{GeV}^2, q_{\mathrm{max}}^2]$	MILC/Fermilab	< 1.5%	$\mathrm{FNAL/MILC}\ 1503.07237$
$\mathcal{F}(1)^{B o D^*\ell u}$	$q_{ m max}^2$	MILC/Fermilab	1.4%	$FNAL/MILC\ 1403.0635$
$f_{+,0}^{B_s ightarrow D_s\ell u}$	$near-q_{max}^2$	ETMC/Wilson	$\sim 4.4\%$	Atoui et al. 1310.5238
$\{f_i,g_i\}^{\Lambda_b o p\ell u}$	$[13 {\rm GeV}^2, \sim q_{\rm max}^2]$	DW/RHQ	$\sim 5\%$	Detmold et al. 1503.01421
$\{f_i,g_i\}^{\Lambda_b\to\Lambda_c\ell u}$	$[6 {\rm GeV}^2, \sim q_{\rm max}^2]$		${\sim}3\%$	

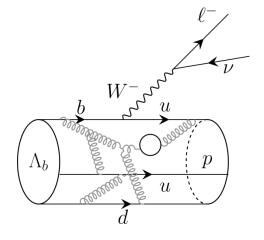
$|V_{ub}|$ from $B \to \pi \ell \nu$ decay

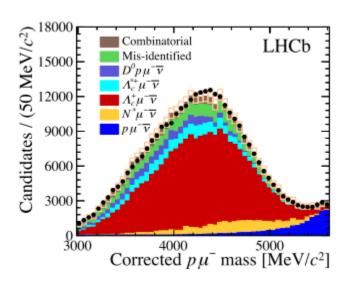
- New lattice results: RBC/UKQCD (1501.05373), FNAL/MILC (1503.07839)
- \triangleright Very different gauge actions (but similar b-quark action), consistent form factors
- Form factor shape is consistent with experiment
- ► Largely improved uncertainty on $|V_{ub}|$ (8% \rightarrow 4.3%)
- Lattice and experimental errors are commensurate

$|V_{ub}|$ from $\Lambda_b \to p\ell\nu$ decay

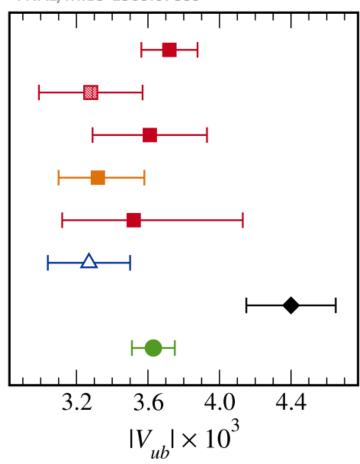

- \triangleright New alternative method to determine $|V_{ub}|$
- Detmold et al 1503.01421 1306.0446
- Sensitive to the right-handed current contributions
- ightharpoonup Determine $|V_{ub}|/|V_{cb}|$, require $|V_{cb}|$ as input

$$\frac{|V_{cb}|^2}{|V_{ub}|^2} \frac{\int_{15 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to p \, \mu^- \bar{\nu}_\mu)}{dq^2} dq^2}{\int_{7 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to \Lambda_c \, \mu^- \bar{\nu}_\mu)}{dq^2} dq^2}$$


$$= 1.470 \pm 0.115 \pm 0.104$$


Competitive uncertainty (5%)

$$\frac{\mathrm{d}\Gamma/\mathrm{d}q^2}{|V_{ub}|^2} \text{ (ps}^{-1} \text{ GeV}^{-2}\text{)}$$


Meinel's Talk, Friday

V_{ub} | summary

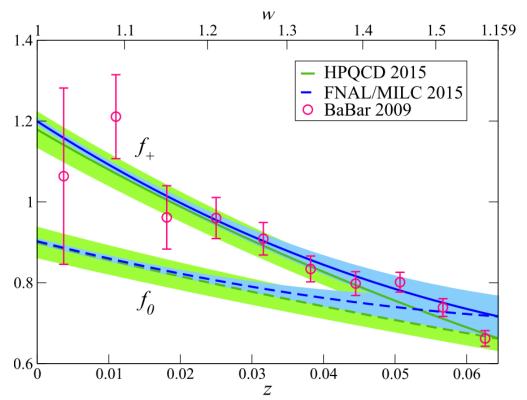
Fermilab/MILC 2015 + BaBar + Belle, $B \rightarrow \pi l \nu$

Fermilab/MILC 2008 + HFAG 2014, $B \rightarrow \pi l \nu$

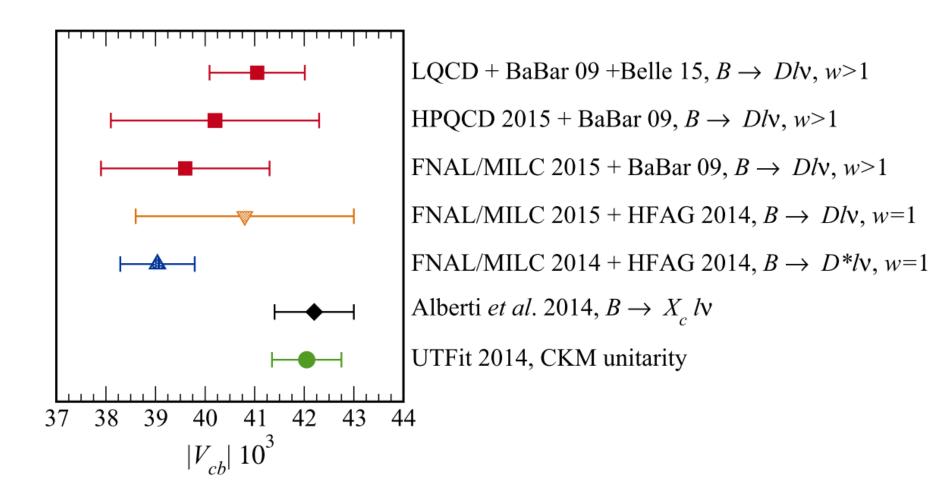
RBC/UKQCD 2015 + BaBar + Belle, $B \rightarrow \pi l \nu$

Imsong *et al.* 2014 + BaBar12 + Belle13, $B \rightarrow \pi l \nu$

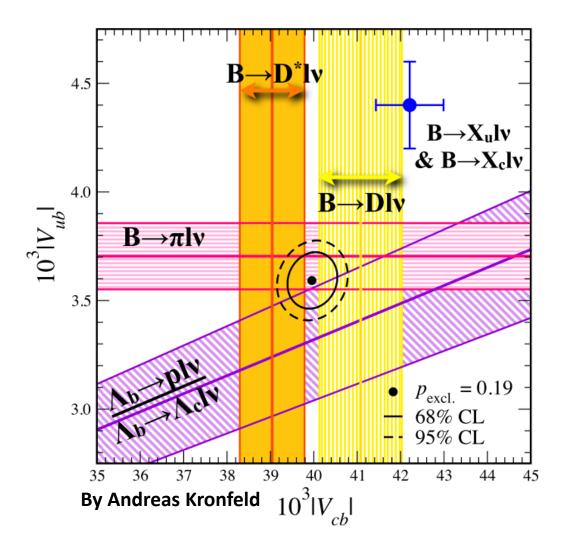
HPQCD 2006 + HFAG 2014, $B \rightarrow \pi l \nu$


Detmold *et al.* 2015 + LHCb 2015, $\Lambda_b \rightarrow plv$

BLNP 2004 + HFAG 2014, $B \rightarrow X_{\nu} l \nu$

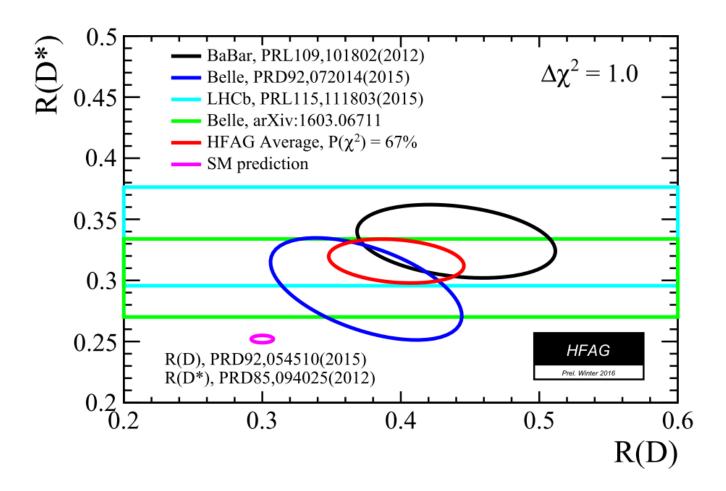

UTFit 2014, CKM unitarity

$|V_{cb}|$ from $B \to D\ell\nu$ decay (nonzero recoil)


- First unquenched lattice results on $B \to D\ell\nu$ away from zero recoil FNAL/MILC 1503.07237, HPQCD 1505.03925
- > Same gauge configurations but different *b*-quark implementation
- > Consistent lattice results, good crosscheck
- Form factor shape consistent with experiment
- Experimental error dominates total error

$|V_{cb}|$ summary

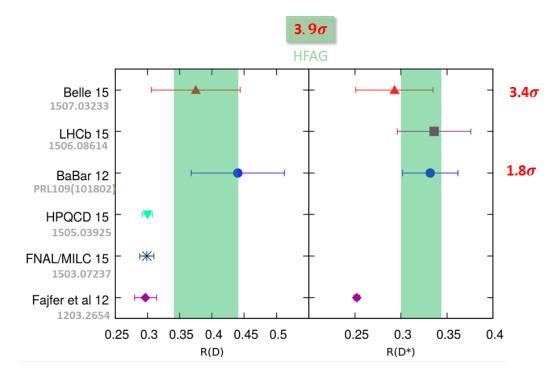
$|V_{ub}|$, $|V_{cb}|$ puzzles: revisit with new results



- Very hard to explain by NP.
 Unlikely right-handed current
 Detmold et al 1503.01421
 Crivellin et al, 1407.1320
- How lattice can help:
 - * Different channels: $B_s \to K\ell\nu$ HPQCD 2014, RBC/UKQCD 2015
 - * More indep. determinations: Lattice averaging (FLAG)
 - * $B \rightarrow D^* \ell \nu$ with w > 1
 - * Continue to improve : precision for the Belle II era

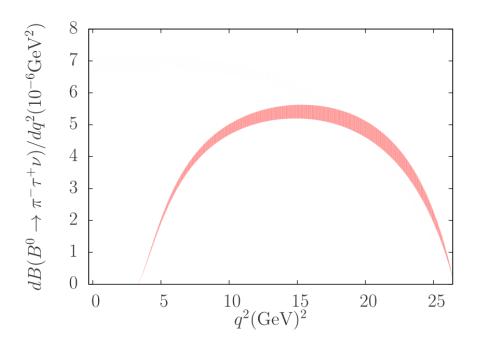
$R(D^{(*)})$

Tree-level, semileptonic decays with systematic cancellations with the ratio


$$R(D^{(*)}) = \frac{BR(B \to D^{(*)}\tau\nu)}{BR(B \to D^{(*)}\ell\nu)}$$

$R(D^{(*)})$ from lattice

 $\rightarrow B \rightarrow D\ell\nu$


$$R(D)_{\text{FNAL/MILC15}} = 0.299(11)$$
 1503.07237 $R(D)_{\text{HPQCD15}} = 0.300(8)$ **1505.03925**

 $\rightarrow B \rightarrow D^* \ell \nu$, on-going effort from FNAL/MILC,

$R(\pi)$

- If NP is responsible for the excess in $R(D^{(*)})$, it might also enhance $R(\pi)$
- Use the precise determination of $f_{0,+}^{B\to\pi\ell\nu}$ from lattice+experiment combined fit to compute $R(\pi)$
- ightharpoonup Belle is searching for the $B \to \pi \tau \nu$ decay Hamer, EPS 2015

Du et al, 1510.02349

$$BR(B^0 \to \pi^- \tau^+ \nu_\tau) = 9.35(38) \times 10^{-5}$$

$$R(\pi) \equiv \frac{\mathrm{BR}(B \to \pi \tau \nu_{\tau})}{\mathrm{BR}(B \to \pi \ell \nu_{\ell})} = 0.641(17)$$

Dutta et al 1307.6653

Summary

- There have been major updates from Lattice QCD on the calculations of B semileptonic decays. The CKM matrix elements $|V_{ub}|$ and $|V_{cb}|$ have been updated.
- Lattice QCD calculations play an important role in the determination of $R(D^{(*)})$, which provides the precision needed to resolve the puzzle of multiple-sigma descrepancy.