B-meson semileptonic rare decay phenomenology from lattice QCD

Ran Zhou

Fermilab

(ICHEP 2016, Chicago, US)

08/06/2016

(日) (리) (리) (토) (토) (미) (리)

1 / 17

Heavy to light semileptonic decays

- B-meson semileptonic decays through tree-level diagram $(b \to u l \nu)$. For example, $B \to \pi l \nu$, $B_s \to K l \nu$, $\Lambda_b \to p l \nu$
- *B*-meson semileptonic decays through loop-level diagram $(b \to s(d)ll)$ For example, $B \to K(\pi)l^+l^-$, $B \to K(\pi)\nu\bar{\nu}$, $\Lambda_b \to \Lambda ll$

40149141111 1 000

2 / 17

Ran Zhou (Fermilab) 08/06/2016

Standard Model prediction

The Standard Model prediction can be written in a generic form:

Theo. pred. = (prefactors) × (CKMfactor) ×
$$\langle f|\hat{O}|i\rangle$$

- Prefactors contain the Wilson coefficients (short distance physics).
- CKM factor depends on the processes.
- Lattice QCD calculates $\langle f|\hat{O}|i\rangle$ non-perturbatively from first principle. (long distance physics)

Hadronic matrix elements and form factors

ullet Matrix elements in $B o K(\pi)II$ and $B o \pi I
u$ processes:

$$\langle B(p)|\bar{b}\gamma^{\mu}s|K(k)\rangle$$
, $\langle B(p)|\bar{s}\sigma^{\mu\nu}b|K(k)\rangle$

$$\langle B(p)|\bar{b}\gamma^{\mu}s|K(k)\rangle = f_{+}(p^{\mu} + k^{\mu} - \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}) + f_{0}\frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}$$

$$= \sqrt{2m_{B}}\left[f_{\parallel}\frac{p^{\mu}}{m_{B}} + f_{\perp}k_{\perp}^{\mu}\right]$$

$$\begin{cases} f_{\parallel}(E_{K}) = \frac{\langle B(p)|\bar{b}\gamma^{0}s|K(k)\rangle}{\sqrt{2m_{B}}} \\ f_{\perp}(E_{K}) = \frac{\langle B(p)|\bar{b}\gamma^{i}s|K(k)\rangle}{2\sqrt{m_{B}}} \frac{1}{p_{i}} \end{cases}$$

$$\begin{cases} f_{0}(E_{K}) = \frac{2m_{B}}{m_{B}^{2} - m_{K}^{2}}\left[(m_{B} - E_{K})f_{\parallel}(E_{K}) + (E_{K}^{2} - m_{K}^{2})f_{\perp}(E_{K})\right] \\ f_{+}(E_{K}) = \frac{1}{\sqrt{2m_{B}}}\left[f_{\parallel}(E_{K}) + (m_{B} - E_{K})f_{\perp}(E_{K})\right] \end{cases}$$

Ran Zhou (Fermilab) 08/06/2016 4 / 17

Hadronic matrix elements and form factors

Semileptonic $B \rightarrow KII$ transition from tensor current:

$$q_{
u}\langle K(k)|ar{s}\sigma^{\mu
u}b|B(p)
angle = rac{if_{T}}{m_{B}+m_{K}}\left[q^{2}(p^{\mu}+k^{\mu})-(m_{B}^{2}-m_{K}^{2})q^{\mu}
ight]$$

Solve for f_T :

$$f_T = \frac{m_B + m_K}{\sqrt{2m_B}} \frac{\langle K(k)|ib\sigma^{0i}s|B(p)\rangle}{\sqrt{2m_B}k^i}$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

08/06/2016

5 / 17

Lattice ensembles used in $B \to K(\pi)II$ calculations

Figure: Ensembles of QCD gauge field configurations used in the simulations.

Ran Zhou (Fermilab) 08/06/2016 6 / 17

f_{\parallel} , f_{\perp} chiral-continuum extrapolations

Figure : Chiral-continuum extrapolation on f_{\parallel} (left).

- Lattice-QCD simulations are in the low $E_{K(\pi)}$ region.
- Form factors in the full q^2 range are obtained from z-expansion fit.

Ran Zhou (Fermilab) 08/06/2016 7 / 17

Heavy to light semileptonic rare decays (Loop level)

New results on *B*-meson rare decays

	Fermilab/MILC	Fermilab/MILC	Detmold and Meinel
process	B o KII,	$B o \pi II$	$\Lambda_b o \Lambda$
kinematics	full q^2	full q^2	full q^2
ensembles	MILC asqtad	MILC asqtad	RBC/UKQCD DWF
N_f	2+1	2+1	2+1
а	4/0.045-0.12	4/0.045-0.12	2/0.09-0.12
$ extcolor{M}_{\pi}^{\min}$	260	260	227
light quark	asqtad	asqtad	DWF
<i>b</i> quark	Fermilab	Fermilab	RHQ
Ref.	PRD.93.025026	PRL.115.152002	PRD.93.074501

- PRD.93.034005 (Fermilab/MILC, B rare decay pheno)
- PRD.94.013007 (Meinel and van Dyk, Λ_b rare decay pheno)
- PRD.88.054509, PRL.111.162002 (HPQCD, $B \to KII$ ff and pheno), PRD.89.094501, PRL.112.212003 ($B \to K^*II$ ff and pheno)

Ran Zhou (Fermilab) 08/06/2016 8 / 17

Standard Model predictions of B rare decays

• Standard-Model predictions of the differential decay rate in $B \to \pi II$ and $B \to KII$ process (PRL.115.152002, PRD.93.034005).

Ran Zhou (Fermilab) 08/06/2016 9 / 17

Resonance states and non-lattice errors

E. Lunghi at KITP 2015

1406.0566

- As the form factor errors become smaller, cautious is needed to treat the non-lattice errors in the Standard-Model predictions.
- The resonance states could introduce the violation of quark-hadron duality in the high q^2 range (1406.0566, PRD.70.114005, EPJC.71.1625).
- For all non-lattice errors, please refer to E. Lunghi's talk at KITP Program "Lattice Gauge Theory for the LHC and Beyond"

Standard Model predictions of B rare decays

• Standard-Model predictions of the differential decay rate in $\Lambda_b \to \Lambda II$ processes. (PRD.93.074501)

11 / 17

Ran Zhou (Fermilab) 08/06/2016

Standard Model predictions of B rare decays

• Four measurements combined disfavor the Standard-Model hypothesis at the 1.7σ level (PRD.93.034005).

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C*

Constraints on New Physics.

Figure : Constraints to new physics from $B \to K(\pi)II$ plus $B_s \to \mu\mu$ decays (PRD.93.034005) and $\Lambda_b \to \Lambda II$ decay (PRD.94.013007).

Ran Zhou (Fermilab) 08/06/2016 13 / 17

Impact from new B-mixing results

- Determinations of $|V_{td}|$ and $|V_{ts}|$, and their ratio from *B*-mixing and rare $B \to K(\pi)\mu\mu$ decays (PRD.93.113016, PRD.93.034005).
- Tension between FCNC and tree processes: results from B-mixing (rare B decays) lie below the determinations from CKMfitters full global unitarity triangle fit using only tree-level inputs by $1.2-2.1\sigma$.

Theoretical studies of the $B \to K(\pi)\nu\bar{\nu}$

In the Standard Model, the decay rate for $B \to K(\pi) \nu \bar{\nu}$ is: (arXiv:1409.4557, arXiv:0902.0160)

$$\frac{dB(B \to K(\pi)\nu\bar{\nu})}{dq^2} = 3\tau_B |N_{K(\pi)}|^2 \frac{X_t^2}{(\sin^2\theta_W)^4} \rho_{K(\pi)}(q^2) , \qquad (1)$$

where the numerical coefficient $N_{K(\pi)}$ depends upon the relevant CKM factors and $\rho_{K(\pi)}$ is the rescaled hadronic form factor:

$$N_{K(\pi)} = V_{tb}V_{ts(d)}^* \frac{G_F \alpha_{EW}}{16\pi^2} \sqrt{\frac{M_B}{3\pi}}, \qquad (2)$$

$$\rho_{K(\pi)}(q^2) = \frac{\lambda^{3/2}(q^2)}{M_B^4} f_+^2(q^2) . \tag{3}$$

• The form factor f_+ is the same as in the $B \to K(\pi)I^+I^-$ lattice-QCD calculations.

Ran Zhou (Fermilab) 08/06/2016 15 / 17

Theoretical studies of the $B \to K \nu \bar{\nu}$

- ullet Grey band: theoretical result from FNAL/MILC B o K form factor
- Red points: theoretical result from and lattice-QCD plus LCSR form factor results (arXiv:1409.4557).

Ran Zhou (Fermilab) 08/06/2016 16 / 17

Summary

- There are many progresses in the heavy flavor physics from lattice calculations since 2015.
- Many new 2σ hints of NP have been revealed by the improvements of lattice calculations.
- Belle II and LHCb will improve measurements and observe new decays.
- We will continue to sharpen tests of SM and may reveal presence of NP.