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Absolute Space and Rotation

Newton said that space is absolute 

His example of a way to measure it:  

A rotating vessel of water 
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Rotation in General Relativity

Space still defines an absolute local inertial frame 

A new effect in GR:  “Frame dragging” 
local inertial frame is “dragged” by dynamical space-time 
local frame rotates relative to the distant universe 

Drag is measured in the solar system 
It becomes extreme in spinning  black holes 
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Rotation in Quantum Mechanics

Standard elementary  particles live in classical space 

Spin is defined with respect to local inertial frame 

Rotation is defined even for infinitesimal distances 

But this story breaks down at the Planck scale
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Planck scale: General Relativity meets Quantum Mechanics 

At the Planck scale, geometry has to be fundamentally different
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From these we derive the Chandrasekhar radius and mass at the onset of instability:
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where m
P

=
p

~c/G denotes the Planck mass. The same critical scales emerge from other kinds of quasi-equilibrium
states dominated not by degeneracy pressure, but by thermal pressure; the stability depends on when the velocity of
the particles that dominate the pressure approach the speed of light.

In this sketch approximation, the (critical maximum) mass M
Chandra

only depends on m
b

, which makes it clear why
the masses of neutron stars nearly match those of white dwarfs. Indeed, M

Chandra

sets the scale for all stellar-mass
systems. The radius R

Chandra

also depends on the lighter particle mass m
e

; lighter particles yield a larger critical
minimum radius when collapse occurs, so that white dwarves are much larger than black holes of the same mass when
they become unstable.

For the purposes of this paper, it is useful to define an idealized Chandrasekhar radius and mass, in terms of a
single particle mass m, that applies if the gravitational mass and pressure support comes from the same particles:
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For m about the mass of the neutron, these approximately give the radius and mass of a neutron star. Since R
C

= M
C

,
the system is also close to the radius R

S

of a black hole, for which R
S

= 2M in Planck units.
While the Chandrasekhar mass (Eq. 9) has broad significance for shaping astrophysical systems, the idealized

Chandrasekhar radius (Eq. 8) takes on a universal significance in the relationship of field states with quantum
geometry. At larger separations, the e↵ect of gravity significantly alters field theory, as shown in Fig. (1). The e↵ect
can be interpreted as entanglement of fields with quantum geometry— a breakdown of the standard assumption of
classical geometry on large scales.

Gravitational Constraint on Virtual States of a Field Vacuum

To illustrate the e↵ect, consider a model of matter based on a relativistic quantum field, such as those of the
Standard Model, combined with gravity. An important di↵erence from the system studied by Chandrasekhar is that
the quantum system includes all possible states of the field, including nonzero occupation numbers for all of its modes.

Consider states of a field below some UV cuto↵ scale with wavelength � = ~/mc. In a volume R3, the field has
about N ⇡ (R/�)3 independent modes. In a state where each mode has mean occupation number of order unity, the
number of particles per volume is about n ⇡ (mc/~)3, as in the Chandrasekhar system. Thus, in a volume with a
size larger than Eq. (8), the excited field state has a mass larger than that of a black hole of the same size, which is
of course an impossible physical state, inconsistent with general relativity.

This paradox suggests that even in a vacuum, exotic Planck scale quantum correlations somehow produce an
“infrared cuto↵” to field states of mass m at the idealized Chandrasekhar radius (Eq. 8), which for standard fields
is a macroscopic scale. Such an infrared constraint would not have been noticed in particle experiments[22, 31]. The
e↵ective cuto↵ from this entanglement is again the system size shown in Fig. (1).

Holographic and Statistical Gravity

Black holes were discovered as classical solutions in a classical geometrical theory, general relativity. However,
an extensive literature on the theory of black holes suggests that general relativity has another formulation as an
emergent statistical system, with a holographic information content determined by the Planck scale.

Classical black holes obey analogs of thermodynamic relations, where the entropy of a black hole is one quarter of
the area of its event horizon in Planck units, and black holes radiate nearly as black bodies[32–36]. Thus, black holes
appear to be statistical systems composed of Planck elements, with a holographic information content proportional
to area. Many thought experiments and precise examples of holographic mappings in various spaces suggest that this
holographic property generalizes to any system with gravity, not just black holes[37–41].
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Exotic Rotational Correlations in Quantum Geometry
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Estimates are presented of correlated large scale rotational fluctuations in a flat space-time as-
sembled from noncommuting quantum elements at the Planck length lP . They are visualized as
“quantum twists of space” about any observer: the orientation of a nonrotating inertial frame at
separation R fluctuates relative to more distant space at an angular rate ! with vanishing mean,
but with an exotic variance h!2i ⇡ c2lPR

�3 on a timescale ⇡ R/c. It is shown that the expected
exotic centrifugal acceleration matches observed cosmic acceleration on the scale where rotational
displacement matches the strong interaction scale.

It seems unavoidable that new exotic quantum cor-
relations, not present in a continuous, infinitely divisi-
ble space-time, should occur if geometry emerges from a
quantum system at the scale of the Planck length

lP ⌘ ctP ⌘
p
~G/c3

, as generally occurs in theories of quantum gravity.
However, in the extensive literature on quantum exten-
sions of general relativity[1–4], there is no generally ac-
cepted model of exotic geometrical correlations.

Exotic correlations are not generally confined to the
Planck scale. Large scale quantum gravitational correla-
tions are negligible in standard field theory, or in theo-
ries of its ultraviolet completion, such as string theory[5].
However, that feature could be an artifact of the ap-
proximations used to quantize fields on a classical back-
ground. General arguments[6–8] suggest that quantum
geometry a↵ects large systems, even in flat space-time,
much more than field theory predicts— with a reduced
information content that scales holographically, like the
square, rather than the cube of the system size— but the
nature of this modification is not known.

Arguments sketched here, from extrapolation of quan-
tum mechanics and gravity, show that the inertial frame
at the Planck scale is a quantum superpostion of states
corresponding to fluctuations in rotation at the Planck
frequency, t�1

P . The inertial frame measured on scales
much larger than Planck fluctuates from the expected
classical frame assumed in standard theory, a new e↵ect
that can be visualized as exotic di↵erential rotational
twists of space. A covariant statistical model[9], based
on local Planck scale entanglement on an observer’s light
cones, leads to exact predictions for correlations in phys-
ical quantities, including measurable signals in interfer-
ometers now under construction.

It is shown here that these exotic rotational correla-
tions reduce the information content of quantum fields
su�ciently to reconcile the mass of their virtual states
with gravity. In a cosmological setting, it is shown that
their statistical kinematic e↵ect formally includes a fluc-
tuating but always positive radial acceleration, whose ex-
pected value matches the observed cosmic acceleration
at the scale where rotational displacements match the
strong interaction scale of the Standard Model vacuum.
These coincidences hint that the cosmological constant
could be explained from known scales of physics.

Fluctuations of the inertial frame at the Planck scale—
General relativity provides a complete classical theory of
space. In particular, the gravitational field of matter ev-
erywhere causally influences the local nonrotating frame
via frame dragging. In classical physics, no additional
theory is needed to account for relationships between lo-
cal and distant directional motion. However, it is a chal-
lenge for a quantum theory of gravity to account for the
coincidence of local and global frames. In a fully quan-
tum space-time[1–3], all positions and motions, indeed
all observables, are defined by relationships of quantum
elements. There is no absolute reference standard to de-
fine the local frame apart from those elements, so the
relationship between local and global measurements is
a↵ected by quantum indeterminacy.

In classical relativity, the rate of change of any direc-
tion can be measured locally, relative to local absolute
space. The inertial frame that defines local rotation is
precisely defined at all scales. Without quantum me-
chanics, a measurement of the local inertial frame (say,
with Newton’s bucket of water) scales to infinitesimal
size, with no modifications to the concept of absolute
space.

We now know that Newton’s bucket itself, or any other
measuring device, as opposed to the space it inhabits,
is actually governed by quantum mechanics. Rotational
states in standard quantum systems are still defined rela-
tive to absolute, classical space. But at the Planck scale,
gravity intervenes: the measurement system (a quantum
“bucket”) cannot be separated from the measured quan-
tity (absolute classical space).

A measuring device of Planck size has about the mass,
size and maximal spin as a black hole, but it also has
about the same mass, size and angular momentum (⇡ ~)
as a single elementary particle. Like a particle, its angu-
lar momentum is a superposition of quantum states, as
described by a quantum spin algebra. It can have a def-
inite spin about at most one axis; the other components
are indeterminate. Moreover, general relativity predicts
that a Planck size spinning bucket produces frame drag-
ging comparable with a maximally spinning black hole, in
which the local inertial frame rotates relative to distant
space at frequency ! ⇡ t�1

P . The quantum indeterminacy

of spin is therefore not confined just to the measuring de-

vice, but is inherited by the space itself. Thus, extrap-

Planck length ~ 10-35 meters

Local rotation cannot be defined below the Planck length

Planck mass ~ 1019 proton masses



No Absolute Rotation at the Planck Scale

Extrapolate a Newton bucket to Planck length and mass 
Gravity and frame dragging ~ black hole 
Indeterminacy and spin ~ quantum particle 
Indeterminate spin drags the inertial frame 
The local inertial frame is a quantum superposition 

Rotation and direction emerge only statistically, in larger systems 
Implies new, exotic nonlocal correlations, not in standard theory 
Exotic nonlocal correlations can be computed in a statistical model

+
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that can be combined into a quantity that scales like ✏
ijk

x
k

`
P

, in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i

(⌧) and x�
i

(⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,
although below we will assume a planar apparatus for simplicity. The functions x+

i

(⌧) and x�
i

(⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (27)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

world line of 
observer

Projection of state by 
an observer => 
transverse   
displacements on 
each light cone 

Random 
displacement 
on each light 
cone  
~1 Planck time 
apart

Environmental 
Information
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theory, di↵usion, or statistical random walks, which describe the projection of a 1D time series onto two dimensions
of direction. The estimated e↵ect can be expressed as a variance in transverse position and direction at distance R:

hX2
?iR = `P R , (1)

h�✓2iR = `P /R , (2)

with a normalization approximately equal to the standard Planck length, `P ⇡ lP . The emergent system displays
exotic rotations— fluctuations or “twists” in the inertial frame— that correspond to displacements of this magnitude
on a timescale R/c. These fluctuations could have observable e↵ects on propagating light.

The quantitative model here defines the physical elements of this picture much more sharply than the scenario
for emergence of inertial frames sketched in ref.[17]. We present an operational definition of rotation— in e↵ect, a
concrete operational model of quantum measurement for an emergent geometry. This model captures details of the
unique constraints imposed by preserving exact causal structure at Planck resolution, and allows us to make exact
predictions for exotic statistical correlations in experiments with only one parameter, the Planck correlation scale `P .

B. Assumptions

We start from the idea that an entire physical system, including space and time, obeys quantum mechanics. Space
and time are relational, that is, all spatial relationships are derived within a quantum system made of elements or
subsystems at the Planck scale. The relative positions of what emerge as classical events are associated with how
the Planck scale elements entangle to produce a whole system. Quantum decoherence leads to random Planck length
displacements between elements, modeled as classical random variables. Entanglement of the elements produces
correlations, expressed in our model as a covariance among the random variables. The covariance is confined to
within a Planck length of future light cones defined by each event on the world line of an observer. This structure is
used to derive the exotic large scale correlations of observables. As light propagates through this system it entangles
with the geometrical state and inherits a projection of the exotic Planck scale phase correlation. The di↵erence from
classical behavior manifests as an exotic “spooky” correlation of the phase of the light, not present in standard theory.
It can a↵ect the signal in an instrument that measures a di↵erence in phase from two di↵erent paths, such as an
interferometer. The statistical result depends only on the shape of the light path, although the actual noise signal
depends on the world line where the phases are converted into a signal— the “collapse” of the wave function of the
space-time in a particular situation.

The model has no dynamics, but is based only on classical statistics and geometry. This generic model of correlations
shows how Planck scale quantum elements can entangle to create emergent classical inertial frames, in a way that is
highly constrained by known symmetries of causal structure. The correlations quantitatively describe the relationship
between local and global inertial frames in quantum gravity— the quantum deviations from the classical Machian
agreement between local and global measures of rotation. They account for how chaotic and indeterminate directions
at the Planck scale can emerge to approximate a determinate classical space-time on large scales.

C. Covariance of Random Displacement on Future Light Cones of an Observer

Light cones (or null cones) are the covariant objects that define causal structure; they define the sharp classical
boudaries between past, present and future, and between timelike and spacelike separation of events. We base our
model on the principle that classical causal structure is respected on all scales larger than the Planck length. In the
frame of an observer O, we define a “light cone time” coordinate variable,

TO = tO � |xO|
c

. (3)

A surface of constant T in 3+1D represents a 2+1D light cone emanating from an event on an observer’s world line,
a 3-surface defined in conventional coordinates by t = |x|/c. Although we will choose to calculate in the rest frame of
an observer, the causal relationships defined by the actual light cones are independent of the choice of frame and have
a Lorentz invariant physical meaning. In the following, we drop subscripts until they are needed later for comparing
measurements from more than one observer.

To connect with physical observables we develop a model of the geometrical character of random variables, which
will allow us to compute how the random displacements a↵ect physical quantities. The exotic departure from the
classical system is described as a random variable with variance `2P :

�X?(T) ⇠ N
�
0, `2P

�
. (4)

Correlations are 
causally local, but 

create spooky 
entanglement on 

spacelike surfaces

A Covariant Statistical Model for How Directions in Space-Time 
Emerge from the Planck  Scale: Light Cone Twists

https://arxiv.org/abs/1607.03048
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“Twists” of inertial frame 
~ Planck random walk in transverse position 
Mean rotation vanishes, mean square does not 

Each “shell” jitters relative to the one next to it, or 
previous to it, by one Planck length each Planck 
time 

Jitter is inherited by transversely propagating light 

Directional fluctuations on large scales get smaller: 

And rotational fluctuations on larger scales get slower:  

Exotic rotational  fluctuations on spacelike surfaces
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Exotic Correlations of Transverse Position and Direction

The arguments just given provide estimates of the amount of information, and the scale of entanglement of geometry
and field states. However, they do not reveal the origin or nature of the entanglement. Based on these estimates
alone it is possible to imagine that the entanglement may be of a very subtle nature. The following arguments
more specifically suggest that new Planckian quantum behavior in large systems may appear as long-range, nonlocal
geometrical correlations of the world lines of massive bodies. They take di↵erent complementary approximations to
the emergent space but all approximately agree on the magnitude and character of exotic Planck correlation, related
to a transverse width for the geometrical position wave function of a geometrical position operator x̂ that depends on
separation R approximately as

⌅(c⌧ = R) ⇡ hx̂2
?i

R

= R`
P

, (10)

or equivalently, a wave function of emergent direction with a separation-dependent width,

h�✓2
P

i
R

⇡ hx̂2
?i

R

/R2 = `
P

/R (11)

A consistent toy model of a quantum algebra to describe geometrical states with these properties is reviewed in the
Appendix.

Quantum Geometrical Information

Quantum mechanics imposes a number of fundamental limits on the precision of position measurements[22]. One
of these[39] enforces a minimum amount of energy associated with measurement of any time interval between events:
the time it takes a quantum system to go from one state to an orthogonal state is greater than or equal to ⇡~/2E,
where E is the expectation value of the energy of the system above the ground state energy. This result has been
used to show[40] that in any volume there is a maximum number of distinguishable events, such that the density of
clocks and signals used to measure their separation, GPS-style, not exceed the density of a black hole. In a spacetime
volume of radius R and duration ⌧ in Planck units, the bound on the number of events is about R⌧ . Since c⌧ ⇡ R for
a covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[40]. Note that the area here combines spatial and temporal dimensions, R and ⌧ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting o↵
of macroscopic objects.

Planck Di↵raction Limit on Directional Resolution

Holographic entanglement of fields in emergent geometry may be governed by a Planckian bound on directional
information. An estimate of the directional spread follows directly from the relativistic wave equation, @

µ

@µ = 0. For
waves of frequency ! propagating in a beam— a stationary, monochromatic wave state proportional to e�i!t (x, y, z),
transversely localized in x and y and extended in z— the wave equation becomes

[@2
x

+ @2
y

� 2i!@
z

] = 0, (12)

the same equation used to model laser beams. The minimum transverse angular spread is thus the di↵raction limit
for a Planck frequency beam[18], setting ! ⇡ m

P

c2/~:

h�✓2
P

i ⇡ `
P

/R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
geometry by causal structure: the requirement that radial position and causal structure have Planck length precision
at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
and directional information, which describes two-dimensional angular orientation and transverse position. One factor
R/`

P

of holographic information content describes causal, longitudinal degrees of freedom; the other factor of R/`
P

11

is determined by a choice of world line or timelike observer. In the emergent space, spatial structure is defined by
intersecting light cones from the ends of any interval on the world line, called causal diamonds. World lines, intervals
of proper time, and causal diamonds represent invariant emergent geometrical objects. In the emergent system, there
is no fixed background space to define an inertial frame. From one moment to the next, the situation depends only
on previous relationships. The causal dependences of rotation around a world line are mapped out by the light cones
emanating from each event. The total geometrical state of a system includes entanglement of all of the nested causal
diamonds, and the total variance in position is the sum of variances from the nested diamonds (see Figs. 2, ??).

The e↵ect can be thought of as a quantum di↵erential rotation of space: everything closer than R rotates relative
to everything more distant than R, by a very small amount. It is helpful to visualize the fluctuations as a sum of
coherent discrete transverse spatial displacements, or quantum-gravitational twists of space, associated with discrete
displacements in time. The amplitude corresponds to a Planck scale di↵raction bound on directional resolution in
space, or to a discrete Planck random walk in transverse position. On a null trajectory from a distant source to an
observer, for each Planck step, space experiences a random transverse displacement from the classical trajectory, in
which it shares common with other radial trajectories at the same R. The exotic correlation arises from the sum of
coherent transverse displacement at the 2D boundaries of the nested causal diamonds.

In the quantum states of an interferometer, fields are entangled with geometry. The measured radiation depends
on the phases of light incident on the beamsplitter, which combines geometrical information from macroscopically
di↵erent paths through the space[47–49]. The projection of geometrical quantum states is determined by the true
causal structure of the space, the therefore by the transverse components to the observer’s radial direction. The
relationship between the two is analyzed in next section to compute the e↵ect on an interferometer signal.

Behavior of Exotic Rotational Fluctuations in Large Systems

Like zero point fluctuations of a field excitation in a vacuum, this quantum “motion” represents a quantum system
with a nonzero width of a wave function that has a zero mean. In this picture, the zero point refers to a stationary
direction in the classical nonrotating frame. A quantum relationship with matter out to the cosmic horizon prepares
the global state and defines zero rotation. A zero net rotation state is defined by the classical geometry, but nearby
there is a nonzero quantum variance that depends on distance from an observer. The wave function width is identified
with the exotic correlations and fluctuations.

Directional degrees of freedom are subject to the usual holographic bounds on information, so the above estimates
of directional variance lead to an estimate of the exotic directional correlations and their associated fluctuations, as
shown in Figure (2). The exotic correlation and rotational displacement variance at separation R from an observer
are about

d⌅
R

(⌧)/d⌧ ⇡ (dhx2
?i/dR)(dR/d⌧) ⇡ c`

P

. (22)

The rotational displacement is coherent in all directions from the observer at a constant radial separation defined by
its causal structure— that is, on a 2+1-D tube of spacelike 2-surfaces swept out in time by causal diamonds with
fixed sizes R = c⌧/2. For calculational simplicity, in this paper we focus on results in nearly-flat space relevant for
experiments, but the formulation based on causal diamonds should generalize covariantly to curved spaces. A toy
model of 3D holographic quantum positional states, summarized in Appendix (A), based on the 3D spin algebra,
provides an example of a consistent holographic model of quantum position states in 3D. We use classical space-time
for the time projection, as in Eq. (22). Since the states used are in 3D instead of 4D, time evolution is still treated
heuristically, both here and in the calculation of interferometer response below.

We can describe the e↵ect as statistical fluctuations in rotation of the inertial frame around each axis. An ordinary
rotation about a body at the origin corresponds to transverse components motion dx

i

/dt of a body at x
k

according
to the classical relation,

dx
i

/dt = ✏
ijk

x
k

!
j

, (23)

where !
j

is the rotation rate for component j. In the exotic fluctuations, each component of rotation of a 2-sphere of
radius R has fluctuations with

h!2
i

(R)i ⇡ c2`
P

R�3. (24)

All transverse displacements on a 2-sphere are self consistent according to the classical relation Eq. 23. That is, each
component of rotational fluctuation determines an entangled motion across the whole sphere. In the same way that
spins of quantum particles sent in opposite directions are entangled, in this case, the rotation of all the enclosed world

10
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3. Power Spectral Density

Under the Wiener-Khinchin theorem, an equivalent, frequency-space representation of the autocovariance is the
power spectral density (PSD). The PSD is defined as the Fourier transform of the autocovariance,

g
CSS(f | `P ) ⌘ 2
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where the final equality follows from the fact that CSS(⌧0 | `P ) = CSS(�⌧0 | `P ). This PSD, written in the so-called
engineering convention, is defined only for positive frequencies, into which the power contained in the redundant
negative frequencies is folded via the multiplicative prefactor of two.

V. SPATIAL ENTANGLEMENT AND “SPOOKY” CROSS-CORRELATION

Basic principle: “All correlations are local” — entanglement of states leads to random variables covariant for events
with zero space time interval separation

For one observer, we have expressed this statement in terms of future light cone covariance
This statement requires more unpacking in the case of signals cross correlated between two separate machines
Exotic spatial fluctuations measured by nearly co-located interferometers are expected to exhibit a high degree of

correlation due to the entanglement of neighboring quantum position states. The degree of entanglement between
spatial positions be can expressed in terms of the covariance structure specified by the Gauss-Markov formalism.

A
B

FIG. 5. The entanglement of rotational fluctuations measured relative to two observers is fixed by their tangent light cones.
Along the direction separating the observers, exotic displacements for the two are the same.

Consider the configuration of two observer world lines A and B, with separation RAB , as illustrated in Fig. 5.
The displacement rates dX

A,B
? /dTA,B are relational variables, specific to each observer and its light cone time.

Covariance has defined for light cones of each observer, but the two sets of displacements are not independent of each

“spooky” entanglement of tangent 
light cones: nearby observers see 
the same rotational twists, slightly 
displaced in measured time

Spacelike slices for 
nearby observers
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Thank YouThank You
 An Experiment that Measures Planck Scale Correlations:  

the Fermilab Holometer

12

Proven instrument:  http://arxiv.org/abs/1512.01216, PRL in press 
  
Reconfiguration (“twist”) now underway will be sensitive to rotation 
(ICHEP talk by Chris Stoughton)

http://arxiv.org/abs/1512.01216
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Light paths in various 
interferometer layouts

Currently under 
construction at 
Fermilab:  
bent Michelson layout, 
based on 
reconfiguration of 
Fermilab Holometer 
parts
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pie slice Sagnac

circular Sagnac

square Sagnac

Michelson with one bent arm

Michelson with two bent arms

Time domain Frequency domain

power

Exact predictions for 
exotic correlations in 
signals of various 
interferometer 
layouts 

Planck length is the only 
parameter

Configuration now 
being built: projected 
measurement in less 
than a day



Centrifugal acceleration from rotational fluctuations 
statistically mimics cosmic acceleration at the scale where 

~ strong interaction scale: m~ 200 MeV, R~ 60 km 

Twists of strong interaction vacuum  “shake space apart” 
below confinement scale 

Cosmological constant from scales of known physics 

acceleration timescale  ~ the same combination of 
constants that determines a stellar lifetime (—> why now)

  Rotational Fluctuations and Cosmic Acceleration
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3

appears as distance-dependent statistical fluctuations in
rotation of the inertial frame, shared by inertial test bod-
ies on each causal surface, around each axis. An ordinary
rotation about the origin corresponds to transverse com-
ponents of motion dxi/dt of a body at xk according to
the classical relation, dxi/dt = ✏ijkxk!j , where !j is the
rotation rate for component j. Each component of rota-
tion at separation R has exotic fluctuations on timescale
R/c with with directional variance given by Eq. (1), or
a rotational variance

h!2
i (R)i ⇡ c2lPR

�3. (2)

Entanglement with quantum fields on large scales—
These properties of exotic correlation naturally resolve a
long standing infrared inconsistency of virtual field states
with gravity[7]. A quantum field system includes all pos-
sible states of a field, including nonzero occupation num-
bers for all of its modes. A free field up to some ultravi-
olet cuto↵ scale with wavenumber k = mc/~ has about
(Rk)3 independent modes in a volume of size R. In a
state where each mode has mean occupation number of
order unity, the number of particles per volume is about
(mc/~)3. The energy of the particles in this state matches
the gravitational binding energy in a macroscopic volume
at the Chandrasekhar radius[15]:

RC/lP ⇡ (mP /m)2, (3)

where mP =
p
~c/G denotes the Planck mass. In a vol-

ume with a size larger than RC , the virtual field state has
a mass larger than that of a black hole of the same size,
which is of course an impossible physical state, inconsis-
tent with general relativity. In ref.[7] it was suggested
that exotic quantum correlations somehow produce an
“infrared cuto↵” to field states. Using Eqs. (1) and
(3), we find that entanglement of field states with exotic
nonlocal rotational correlations naturally lead to a signif-
icant reduction in the number of independent field modes,
and therefore in the mass of the virtual field states, for

modes of wavenumber k > h�x2
?i

�1/2
R ⇡ mc/~, for vol-

umes larger than RC(m), and thereby naturally leads to
a cuto↵ at the right scale.

Rotational fluctuations and cosmic acceleration— Cos-
mic data suggest that the expansion of the universe is
accelerating[16–18]. This phenomenon can be interpreted
in general relativity as an e↵ect of a cosmological con-
stant ⇤, which produces a positive acceleration between
two bodies proportional to their separation r in Newto-
nian coordinates, r̈ = H2

⇤r, where H2
⇤ ⌘ ⇤/3. The value

of ⇤, and its relationship with the field vacuum state, is
widely regarded as a deep mystery[19].

It is remarkable that a kinematically identical form
of radial acceleration arises formally from the statisti-
cal e↵ect of rotational fluctuations. In a classical sys-
tem rotating at a rate !, a body at separation r from
the axis of rotation experiences a centrifugal accelera-
tion, r̈ = !2r. Like cosmic acceleration, it is indepen-
dent of mass, proportional to r, and always positive. Ex-
otic rotational correlations have h!2i > 0, so formally

they correspond to a spatially and temporally fluctuat-
ing centrifugal acceleration, whose time averaged radial
component hr̈/ri equals cosmic acceleration on the scale
R⇤ where h!(R⇤)2i = H2

⇤ = ⇤/3. From Eq. (2), we find

R⇤/lP ⇡ (H⇤tP )
�2/3, (4)

the Chandrasekhar radius (Eq. 3) for particle mass

m⇤/mP ⇡ (R⇤/lP )
�1/2 ⇡ (H⇤tP )

1/3. (5)

Since H⇤ ⇡ 10�61t�1
P , the relevant vacuum field scale is

m⇤ ⇡ 10�20mP , the strong interaction scale.
Since the time and space averages of any component

h!ii vanish, the anisotropy of acceleration associated
with rotation around a particular axis, and the inho-
mogeneity associated with random spatial variations in
!, average to zero in a large system. The spatial scale
R⇤ turns out to be about 60 km, and is therefore small
enough to mimic a smooth acceleration on cosmic scales,
consistent with observed cosmic structure and isotropy.
Rotational fluctuations on this scale have a mean square
acceleration about equal to the cosmological constant,
and their exotic transverse displacement ~/cm⇤ is about
equal to the strong interaction length.
This coincidence of both kinematic behavior and scale

hints at a possible physical connection between the cos-
mological constant and the strong interaction scale, as
contemplated long ago by Zeldovich[20], and more re-
cently by Bjorken and others[21–25]. The tiny scale of
cosmic acceleration, far below the Planck scale but not
exactly zero, could be determined by the Standard Model
vacuum. The scale invariance of exotic rotation could be
broken at the scale m⇤ where virtual gluon states change
from massless propagation to confined states that behave
like massive particles. On all scales R > R⇤, exotic vac-
uum rotational fluctuations create fluctuating centrifugal
acceleration in the emergent space-time. Heuristically,
we can say that the rotationally fluctuating field vacuum
statistically “shakes space apart”.
The causal entanglement hypothesis motivates a more

precise way to relate the value of ⇤ to field proper-
ties. Suppose the information in the field vacuum at its
confinement scale matches the holographic information
within the cosmic horizon. The number of gravitational
degrees of freedom is one quarter of the area of the cos-
mic event horizon in Planck units, given by ⇡t�2

P H�2
⇤ .

Dividing by the 3-volume gives the holographic informa-
tion density I⇤ = 3H⇤/4t2P c

3. The density of field modes
per 3D volume with an ultraviolet cuto↵ at wavenumber
k is If (k) = k34⇡/3(2⇡)3. A free scalar field therefore
matches cosmic information (that is, I⇤ = If (k)) for
a field cuto↵ at k = k⇤ ⌘ (H⇤9⇡2/2)1/3. Taking an

estimate[26] of H⇤ = ⌦1/2
⇤ H0 = 0.99± 0.018⇥ 10�61t�1

P
from current cosmological data[27, 28], we find that the
cosmic information matches a field with a cuto↵ at

k⇤c~ = 1.65± 0.01 ⇥ 10�20mP c
2 = 201± 1.2 MeV, (6)
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Summary

Planck scale indeterminacy makes the inertial frame fluctuate 

A statistical model based on causality predicts exotic nonlocal 
rotational correlation in the signal of any interferometer 

The prediction can be tested with a transfiguration of the Fermilab 
Holometer now under construction 

If they exist, centrifugal fluctuations of the strong interaction 
vacuum could account for cosmic acceleration
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