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• The dark matter content of dwarf 
galaxies can be determined from the 
velocities of their stars 

• Measure the Doppler shift of atomic 
lines in stellar spectra 
– Bright dwarf galaxies: velocities for 

thousands of stars 
– Faint dwarf galaxies: velocities for 

fewer than one hundred stars 

• A large dispersion of stellar 
velocities requires a large 
gravitational binding force

Fig. 7.—Same as Fig. 2, but for Canes Venatici II.

Fig. 8.—Same as Fig. 2, but for Canes Venatici I.

Fig. 9.—Same as Fig. 2, but for Hercules.
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Figure 5. (Left) Magellan/M2FS spectra in the Mg b triplet region for three Ret II member stars covering a range of line strengths.
From top to bottom, the stars are DES J033556.28�540316.3, DES J033454.24540558.0, and DES J033457.57540531.4. These stars span
only 0.1 mag in luminosity and 0.08 mag in g � r color, so their e↵ective temperatures and surface gravities should be very similar. Any
di↵erences in line strength therefore translate directly into chemical abundance di↵erences. The apparent emission features near 5182 Å in
the spectrum of DES J033454.24540558.0 are contamination by the Littrow ghost (Burgh et al. 2007). (Right) VLT/GIRAFFE spectra of
the bluer two CaT lines for the same stars.

SMC stars. If they are at the distance of the SMC, they
are at projected separations of 27 kpc, indicating that
they have likely been tidally stripped. The higher veloc-
ity stars have very similar velocities to the Magellanic
Stream gas a few degrees away from Ret II, and could
therefore represent the stellar counterpart of the Stream.

4.5. J-Factor

It is posited that dark matter particles could self-
annihilate to produce gamma rays (e.g., Gunn et al. 1978;
Bergström & Snellman 1988; Baltz et al. 2008). The
large dark matter content, relative proximity, and low
astrophysical foregrounds of dwarf galaxies make them
promising targets for the detection of these gamma rays.
The predicted signal from the annihilation of dark mat-
ter particles is proportional to the line-of-sight integral
through the square of the dark matter density (e.g., Baltz
et al. 2008),

J(�⌦) =

Z

�⌦

Z

l.o.s.
⇢

2
DM(r) ds d⌦0

. (2)

Here, ⇢DM(r) is the dark matter particle density, and the
integral is performed over a solid angle �⌦. The J-factor
is derived by modeling the velocities using the spheri-
cal Jeans equation, with assumptions on the theoretical
priors for the parameters that describe the dark matter
halo (e.g., Strigari et al. 2008; Essig et al. 2009; Charbon-
nier et al. 2011; Martinez 2013; Geringer-Sameth et al.
2015a). Here, we model the dark matter halo as a gen-
eralized Navarro-Frenk-White (NFW) profile (Navarro
et al. 1997), and we use flat, ‘uninformative’ priors
on the dark matter halo parameters (see Essig et al.
2009). Using this procedure, we find an integrated J-
factor for Ret II of log10(J) = 18.8 ± 0.6GeV2 cm�5

within an angular cone of radius 0.2�, and log10(J) =
18.9 ± 0.6GeV2 cm�5 within 0.5�. This latter value as-
sumes that the dark matter halo extends beyond the ra-
dius of the outermost spectroscopically confirmed star,
but truncates within the estimated tidal radius for the
dark matter halo. The quoted uncertainties are 1�, and
are estimated by modeling the posterior probability den-
sity function of log10(J) as a Gaussian. Note that the
uncertainty obtained by modeling this individual system
is larger than is obtained by modeling the entire popula-
tion of dSphs (Martinez 2013).
Several previously known ultra-faint dwarf galaxies

possess larger mean J-factors than Ret II, most notably
Segue 1, Ursa Major II, and Coma Berenices (Acker-
mann et al. 2014; Geringer-Sameth et al. 2015a; Conrad
et al. 2015). Though the velocity dispersions of Ret II
and Segue 1 are consistent within uncertainties, Ret II
is more distant (32 kpc compared to 23 kpc) and has a
larger half-light radius as measured along the major axis
(55 pc compared to 29 pc). The larger distance and larger
half-light radius imply a reduced mean J-factor relative
to Segue 1. In comparison to Ursa Major II, Ret II is
at a similar distance, but has a velocity dispersion that
is smaller by roughly a factor of two. The larger dis-
persion, and hence mass, accounts for the larger J-factor
of Ursa Major II. Coma Berenices is more distant than
Ret II (44 kpc compared to 32 kpc); however, the larger
velocity dispersion of Coma Berenices implies a slightly
larger mean J-factor.
Since Segue 1, Ursa Major II, and Coma Berenices

all possess larger J-factors than Ret II, we expect dark
matter annihilation to produce a larger gamma-ray flux
from these objects. However, no gamma-ray excess has
been associated with any of the previously known dwarf
galaxies (Ackermann et al. 2015). Given comparable
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FIG. 1. Constraints on the DM annihilation cross section at 95% CL for the bb̄ (left) and ⌧+⌧�

(right) channels derived from a combined analysis of 15 dSphs. Bands for the expected sensitivity

are calculated by repeating the same analysis on 300 randomly selected sets of high-Galactic-

latitude blank fields in the LAT data. The dashed line shows the median expected sensitivity while

the bands represent the 68% and 95% quantiles. For each set of random locations, nominal J-factors

are randomized in accord with their measurement uncertainties. The solid blue curve shows the

limits derived from a previous analysis of four years of Pass 7 Reprocessed data and the same

sample of 15 dSphs [13]. The dashed gray curve in this and subsequent figures corresponds to the

thermal relic cross section from Steigman et al. [5].

Our results begin to constrain some of the preferred parameter space for a DM interpre-

tation of a gamma-ray excess in the Galactic center region [16–19]. As shown in Figure 2,

for interpretations assuming a bb̄ final state, the best-fit models lie in a region of parameter

space slightly above the 95% CL upper limit from this analysis, with an annihilation cross

section in the range of (1–3)⇥10�26 cm3 s�1 and mDM between 25 and 50 GeV. However,

uncertainties in the structure of the Galactic DM distribution can significantly enlarge the

best-fit regions of h�vi, channel, and mDM [38].

In conclusion, we present a combined analysis of 15 Milky Way dSphs using a new and im-

proved LAT data set processed with the Pass 8 event-level analysis. We exclude the thermal

relic annihilation cross section (⇠ 2.2⇥ 10�26 cm3 s�1) for WIMPs with mDM
<⇠ 100 GeV an-

nihilating through the quark and ⌧ -lepton channels. Our results also constrain DM particles

with mDM above 100 GeV surpassing the best limits from Imaging Atmospheric Cherenkov

Telescopes for masses up to ⇠ 1 TeV for quark channels and ⇠ 300 GeV for the ⌧ -lepton

channel. These constraints include the statistical uncertainty on the DM content of the

13

Ackermann et al. PRL 115, 231301 (2015)

Combined-likelihood analysis

6 Years of Pass 8 data: improved PSF

Exclude thermal relic mDM < 100 GeV

J-factors and uncertainties from 15 dSphs
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FIG. 1. Constraints on the DM annihilation cross section at 95% CL for the bb̄ (left) and ⌧+⌧� (right) channels derived from
a combined analysis of 15 dSphs. Bands for the expected sensitivity are calculated by repeating the same analysis on 300
randomly selected sets of high-Galactic-latitude blank fields in the LAT data. The dashed line shows the median expected
sensitivity while the bands represent the 68% and 95% quantiles. For each set of random locations, nominal J-factors are
randomized in accord with their measurement uncertainties. The solid blue curve shows the limits derived from a previous
analysis of four years of Pass 7 Reprocessed data and the same sample of 15 dSphs [13]. The dashed gray curve in this and
subsequent figures corresponds to the thermal relic cross section from Steigman et al. [5].
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FIG. 2. Comparison of constraints on the DM annihilation cross section for the bb̄ (left) and ⌧+⌧� (right) channels from this
work with previously published constraints from LAT analysis of the Milky Way halo (3� limit) [33], 112 hours of observations
of the Galactic Center with H.E.S.S. [34], and 157.9 hours of observations of Segue 1 with MAGIC [35]. Closed contours and
the marker with error bars show the best-fit cross section and mass from several interpretations of the Galactic center excess
[16–19].

DM distribution can significantly enlarge the best-fit re-
gions of h�vi, channel, and mDM [36].

In conclusion, we present a combined analysis of 15
Milky Way dSphs using a new and improved LAT data
set processed with the Pass 8 event-level analysis. We ex-
clude the thermal relic annihilation cross section (⇠ 2.2⇥
10�26 cm3 s�1) for WIMPs with mDM

<⇠ 100 GeV annihi-
lating through the quark and ⌧ -lepton channels. Our
results also constrain DM particles with mDM above
100 GeV surpassing the best limits from Imaging Atmo-
spheric Cherenkov Telescopes for masses up to 1 TeV.
These constraints include the statistical uncertainty on
the DM content of the dSphs. The future sensitivity to

DM annihilation in dSphs will benefit from additional
LAT data taking and the discovery of new dSphs with
upcoming optical surveys such as the Dark Energy Sur-
vey [37] and the Large Synoptic Survey Telescope [38].
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FIG. 3. Plotted are contours of the �log-likelihood that correspond to 68%, 95%, and 99.7% and 99.99997% confidence regions
when marginalizing over Milky Way halo uncertainties, in our best estimates for background uncertainties. Counter to the
expectation that a symmetric error becomes asymmetric in a logarithmic plot, with larger extent downward, the error regions
are asymmetrically oriented upward due to the anti-correlation of the J-factor with the annihilation rate h�vi. We also show
the 95% limits from the dwarf galaxy annihilation search by Ackermann et al. [19], and the signal regions as presented in
Refs. [10, 12, 13]. We also show, in light gray, the respective approximate error contours from the inferred approximate dark
matter density in the low stellar density star count measures of Ref. [29]. The b-quark annihilation channel is on the left and
the ⌧ -lepton annihilation channel is on the right.

However, if there is a systematic uncertainty that shifts
local stellar densities lower, our framework allows for a
reassessment of the GCE and dwarf agreement or tension
regarding a dark matter interpretation.

In summary, we performed a Bayesian analysis of the
GCE emission that more accurately accounts for uncer-
tainties in the Milky Way halo parameters and approx-
imates di↵use background emission model uncertainties.
The presence of the GCE is relatively robust to vari-
ations in the background models, though the best fit
values of the dark matter particle mass depends signifi-
cantly on these background models. Our analysis is cer-
tainly not an exhaustive search of all Milky Way halo
and di↵use model uncertainties, but demonstrates the
fact that uncertainties in the halo parameters increase
the uncertainty in dark matter particle parameters. Sig-
nificantly, however, we find that canonical Milky Way
halo properties leave the GCE parameter space signif-
icantly in conflict with dwarf galaxy uncertainties. In
order to make a quantitative statement as to the level of
exclusion of the GCE by the combined dwarf analyses, a
joint likelihood analysis of the combined dwarf and GCE
constraints would need to be performed.

Though the triple consistency of the dark matter inter-

pretation of the GCE with morphology, signal strength,
and spectra remains intriguing, the strong tension with
dwarf galaxy annihilation searches illustrated here, and
extreme change to the Milky Way halo properties would
be needed to alleviate these constraints, may indicate
that astrophysical interpretations of the GCE are more
plausible, or more novel dark matter annihilation mech-
anisms are required to produce the GCE while avoid-
ing constraints from dwarf galaxies. Further multiwave-
length analysis is required to model background sources
of gamma-rays, which constrains the associated system-
atics and allows insight into the true nature of the
gamma-ray excess in the Galactic Center.
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Figure 1. (g − r, r) CMD showing the two reddest and two bluest theoretical
isochrones for old stellar populations ([Fe/H]= −2.27, −1.5 and age = 8, 14
Gyr) at a distance modulus of m−M = 16.5 (∼ 20 kpc), generated from Girardi
et al. (2004). The shaded region shows pixels that pass the selection criteria.

populated by old, metal-poor stars. Simon & Geha (2007) ob-
tained spectra of stars in eight of the newly discovered dwarfs—
CVn, CVn II, Com, Her, Leo IV, Leo T, UMa, and UMa II—and
found mean metallicities in the range −2.29 < [Fe/H]< −1.97.
Based on this result, we consider isochrones for populations
with metallicities of [Fe/H] = −1.5 and −2.27 (the lower
limit in Girardi et al. 2004) and with ages 8 and 14 Gyr. Four
isochrones in these ranges can be used to bound the region of
CMD space we are interested in, namely the four combina-
tions of [Fe/H] = −1.5 and −2.27 and ages 8 and 14 Gyr.
Figure 1 shows these four isochrones projected to a distance of
20 kpc.

We define the selection criteria by the CMD envelope inclu-
sive of these isochrones +/− the 1σ (g − r) color measurement
error as a function of r magnitude. Shifting these isochrones
over distances between m−M = 16.5 and 24.0 in 0.5 mag steps
defines 16 different selection criteria appropriate for old stellar
populations between d ∼ 20 kpc and ! 630 kpc. We truncate
our color–magnitude selection template at a faint magnitude
limit of r = 22.0, beyond which photometric uncertainties in
the colors and star/galaxy separation limit the ability to detect
these populations. We also truncate the selection template at
g − r = 1.0, as including redder objects adds more noise from
MW dwarf stars than signal from more distant red giant branch
(RGB) stars. Finally we do not include stars with δg or δr >
0.3 mag in our analysis. To efficiently select stars within this
CMD envelope, we treat the CMD as an image of 0.025×0.125
(color × mag) pixels and determine which stars fall into pixels
classified as “good” according to the selection criteria. Figure 1
shows an example of the selection criteria, in this case for
m−M = 16.5 (∼ 20 kpc). The shaded region highlights pixels
that would be classed as “good” for a system at ∼20 kpc.

3.3. Spatial Smoothing

After the photometric cuts are applied, we bin the spatial
(R.A., decl.) positions of the selected stars into an array, E,
with 0.◦02×0.◦02 pixel size. We use a locally defined coordinate

Table 1
Angular Sizes of the Satellites Detected in SDSS

Object rh

(arcmin)

Boötes 12.6
Boötes II 4.2
Canes Venatici 8.9
Canes Venatici II 1.6
Coma Berenices 6.0
Hercules 8.6
Leo IV 2.5
Leo V 0.8
Leo T 1.4
Segue 1 4.4
Ursa Major 11.3
Ursa Major II 16.0
Willman 1 2.3

system to avoid projection effects. We then convolve this two-
dimensional (2D) array with a spatial kernel corresponding to
the expected surface density profile of a dSph. We refer to this
smoothed spatial array as A. For our spatial kernel we use a
Plummer profile with a 4.′5 scale length. This value provides
an effective compromise between the angular scale lengths
of compact and/or distant objects with those of closer/more
extended objects. For reference the angular sizes of the new
satellites are listed in Table 1. We use the rh values derived by
Martin et al. (2008) except for Leo V (Belokurov et al. 2008).

The normalized signal in each pixel of A, denoted by S, gives
the number of standard deviations above the local mean for each
element:

S = A − Ā

Aσ

.

The arrays of running means, Ā, and running standard devia-
tions, Aσ , are both calculated over a 0.◦9 × 0.◦9 window around
each pixel of A. In particular, Aσ is given by

Aσ =

√
n(A − Ā)2 ∗ B − ((A − Ā) ∗ B)2

n(n − 1)
.

B is a box filter with n elements and is the same size as
the running average window. The resulting array Aσ gives
the standard deviation value for each pixel of A as measured
over the 0.◦9 × 0.◦9 span of the filter. In the next section, we will
define the detection threshold of this survey in terms of S, as
well as in terms of the local stellar density E.

3.4. Detection Threshold(s)

In a large survey such as ours, it is critical to set detection
thresholds strict enough to eliminate false detections but loose
enough to retain known objects and promising candidates. To
characterize the frequency and magnitude of purely random
fluctuations in stellar density analyzed with our algorithm, we
measure the maximum value of S for 199,000 5.◦5×3◦ simulated
fields of randomly distributed stars that have been smoothed
as described in the previous section. The only difference is
that there is no gradient in stellar density across each field.
In the interest of computational efficiency we do not use a
running window for the mean and σ of each simulated field.
The field size is chosen such that 1000 fields roughly total an
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Figure 1: A color-magnitude (CM) filter used to suppress the noise from foreground stars while preserving the signal from dwarf galaxy stars
at a specific distance. (a) and (c) CM filters for an old and metal-poor stellar population at a distance modulus of 16.5 and 20.0, respectively.
The solid lines show Girardi isochrones for 8 and 14 Gyr populations with [Fe/H] = −1.5 and−2.3. (b) and (d) These CM filters overplotted
on stars from a 1 deg2 field to illustrate the character of the foreground contamination as a function of dwarf distance. Data are from SDSS
DR7.
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Figure 2: (a) Map of all stars in the field around the Ursa Major I dwarf satellite, MV = −5.5, d = 100 kpc. (b) Map of stars passing the CM
filter projected to m −M = 20.0 shown in Figure 1(c). (c) Spatially smoothed number density map of the stars in (b). The Ursa Major I
dwarf galaxy has a µV ,0 of only 27.5 mag arcsec2 [63]. Data are from SDSS DR7.

(iii) Identify Statistically Significant Overdensities. A
search of 10 000 deg2 of SDSS data, optimized for dwarfs
at 16 different distances, and a single choice of stellar
population and scale size require evaluating the statistical
significance of 600 million data pixels that do not necessarily
follow a Gaussian distribution of signal. Setting the detection
threshold to select candidate dwarf galaxies was done by
simulating numerous realizations of the search, assuming a
random distribution of point sources and permitting only
one completely spurious detection. The threshold is set to be
a function of point source number density after CM filtering.

(iv) Follow-up Candidates. Regions detected above the
detection threshold are considered candidates for MW
dwarf galaxies. Although the threshold is set to prevent
the detection of any stochastic fluctuations of a randomly
distributed set of point sources [61], the detections are only
“candidates” because resolved dwarf galaxies are not the only

possible overdensities of point sources expected in the sky.
For example, fluctuations in the abundant tidal debris in
the Milky Way’s halo or (un)bound star clusters could be
detected. It is essential to obtain follow-up photometry to
find the color-magnitude sequence of stars expected for a
dwarf galaxy and also follow-up spectroscopy to measure the
dark mass content (dark matter is required to be classified as
a galaxy) based on the observed line-of-sight velocities.

This search algorithm is very efficient. In the WWJ
search, the eleven strongest detections of sources unclassified
prior to SDSS were 11 of the 14 (probable) ultra-faint
Milky Way dwarfs. All of these but Boötes II were known
prior to the WWJ search. See references in Section 3 for
details of the follow-up observations that confirmed these
objects to be dwarf galaxies. Follow-up observations of
as-yet unclassified SDSS dwarf galaxy candidates are on-
going by several groups, including a group at the IoA at
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Figure 1: A color-magnitude (CM) filter used to suppress the noise from foreground stars while preserving the signal from dwarf galaxy stars
at a specific distance. (a) and (c) CM filters for an old and metal-poor stellar population at a distance modulus of 16.5 and 20.0, respectively.
The solid lines show Girardi isochrones for 8 and 14 Gyr populations with [Fe/H] = −1.5 and−2.3. (b) and (d) These CM filters overplotted
on stars from a 1 deg2 field to illustrate the character of the foreground contamination as a function of dwarf distance. Data are from SDSS
DR7.
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Figure 2: (a) Map of all stars in the field around the Ursa Major I dwarf satellite, MV = −5.5, d = 100 kpc. (b) Map of stars passing the CM
filter projected to m −M = 20.0 shown in Figure 1(c). (c) Spatially smoothed number density map of the stars in (b). The Ursa Major I
dwarf galaxy has a µV ,0 of only 27.5 mag arcsec2 [63]. Data are from SDSS DR7.

(iii) Identify Statistically Significant Overdensities. A
search of 10 000 deg2 of SDSS data, optimized for dwarfs
at 16 different distances, and a single choice of stellar
population and scale size require evaluating the statistical
significance of 600 million data pixels that do not necessarily
follow a Gaussian distribution of signal. Setting the detection
threshold to select candidate dwarf galaxies was done by
simulating numerous realizations of the search, assuming a
random distribution of point sources and permitting only
one completely spurious detection. The threshold is set to be
a function of point source number density after CM filtering.

(iv) Follow-up Candidates. Regions detected above the
detection threshold are considered candidates for MW
dwarf galaxies. Although the threshold is set to prevent
the detection of any stochastic fluctuations of a randomly
distributed set of point sources [61], the detections are only
“candidates” because resolved dwarf galaxies are not the only

possible overdensities of point sources expected in the sky.
For example, fluctuations in the abundant tidal debris in
the Milky Way’s halo or (un)bound star clusters could be
detected. It is essential to obtain follow-up photometry to
find the color-magnitude sequence of stars expected for a
dwarf galaxy and also follow-up spectroscopy to measure the
dark mass content (dark matter is required to be classified as
a galaxy) based on the observed line-of-sight velocities.

This search algorithm is very efficient. In the WWJ
search, the eleven strongest detections of sources unclassified
prior to SDSS were 11 of the 14 (probable) ultra-faint
Milky Way dwarfs. All of these but Boötes II were known
prior to the WWJ search. See references in Section 3 for
details of the follow-up observations that confirmed these
objects to be dwarf galaxies. Follow-up observations of
as-yet unclassified SDSS dwarf galaxy candidates are on-
going by several groups, including a group at the IoA at
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Spectroscopic Follow-up: Stellar Kinematics

8
Geha et al. 2009, ApJ, 692, 1464
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distinguished by their distinct 
locus in velocity-space!
!
Velocity dispersion is an indicator 
of mass, e.g., for Segue 1 a mass-
to-light ratio of >1000 within the 
half-light radius!
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4.1.3. Ultra-faint satellites
Visible as bright dots of different colors in the maps in Figs. 4

and 5 are the compact stellar over-densities corresponding to the
Galactic satellites that give the impression of being still intact.
The brightest of these ‘‘hot pixels’’ correspond to the well-known
star clusters and classical dwarf galaxies, while the very faint and
barely visible small-scale over-densities mark the locations of the
so-called ultra-faint satellites of the Milky Way. Although several
of these, including Boo I, Boo III, CVn I and UMa II, are seen in this
picture with a naked eye, the rest of the population of these objects
is too insignificant and can only be unearthed via an automated
over-density search. The first example of such an automated stellar
over-density detection procedure is presented in Irwin (1994) who
apply the method to the data from the photographic plates of the
POSS I/II and UKST surveys scanned at the APM facility in Cam-
bridge. A vast area of 20,000 square degree of the sky is searched
but only one new nearby dwarf galaxy is detected, namely the Sex-
tans dSph. A variant of the procedure is used, albeit with a little
less luck, by Kleyna et al. (1997), and subsequently by Willman
et al. (2005a) and Willman et al. (2005b) who actually find the
two very first examples of ultra-faint objects in the SDSS data.
The ease with which these systems reveal themselves in a stellar
halo density map akin to the ‘‘Field of Streams’’ (see Zucker et al.,
2006; Belokurov et al., 2006c) helped to re-animate the search
for new Milky Way satellites and more than a dozen of new discov-
eries have been reported in quick succession (Zucker et al., 2006;
Belokurov et al., 2007c; Irwin et al., 2007; Koposov et al., 2007;
Walsh et al., 2007; Belokurov et al., 2008; Belokurov et al., 2009;
Grillmair, 2009; Belokurov et al., 2010). Fig. 6 maps the distribution
of all presently known SDSS ultra-faint satellites on the Galactic
sky.

The accuracy and the stability of the SDSS photometry makes it
possible for the over-density detection algorithms to reach excep-
tionally faint levels of surface brightness across gigantic areas of
the sky. However, even though genuine Galactic satellites can be
identified in the SDSS as groups of only few tens of stars, their
structural parameters can not be established with adequate accu-
racy using the same data. Deep follow-up imaging on telescopes
like INT, CFHT, LBT, Magellan, MMT, Subaru and most recently
HST, has played a vital role in confirming the nature of the tiny
stellar blobs in the SDSS, as well as in pinning down their precise
sizes, ellipticities and their stellar content. The most recent, deep
and wide photometric studies of a significant fraction of the new
SDSS satellites are published by Okamoto et al. (2012) and Sand
et al. (2012). They point out that even at distances D > 100 kpc

from the Galactic centre, the outer density contours of CVn II,
Leo IV and Leo V display extensions and perturbations that are
probably due to the influence of the Milky Way tides. Similarly,
there is now little doubt that both UMa II and Her are excessively
stretched, as their high ellipticities as first glimpsed at discovery
(Zucker et al., 2006; Belokurov et al., 2007c) are confirmed with
deeper data (Munoz et al., 2010; Sand et al., 2009). Note, however
that apart from these two obvious outliers there does not seem to
be any significant difference in the ellipticity distributions of the
UFDs and the Classical dwarfs contrary to the early claims of Mar-
tin et al. (2008). This is convincingly demonstrated by Sand et al.
(2012) with the help of the imaging data at least 2 magnitudes dee-
per than the original SDSS. They, however, detect a more subtle
sign of the tidal harassment: the preference of the density contours
of the SDSS satellites to align with the direction to the Galactic
centre.

As far as the current data is concerned, the SDSS dwarfs do not
appear to form a distinct class of their own, but rather are the
extension of the population of the Classical dwarfs to exceptionally
faint absolute magnitudes. However, as more and more meager
luminosities are reached, it becomes clear how extreme the faint-
est of the UFDs are. The brightest of the group, CVn I and Leo T
show the usual for their Classical counter-parts signs of the
prolonged star-formation. For example, CVn I hosts both Blue
Horizontal Branch and Red Horizontal Branch populations, while
Leo T shows off a sprinkle of Blue Loop stars. However, the rest
of the ensemble appears to have narrow CMD sequences with no
measurable color spread around the conventional diagnostic
features, e.g., MSTO and/or RGB, thus providing zero evidence for
stellar populations born at different epochs (e.g., Okamoto et al.,
2012). The CMDs of the UFDs have revealed no secrets even under
the piercing gaze of the HST: all three objects studied by Brown
et al. (2012) appear to be as old as the ancient Galactic globular
cluster M92. Yet the low/medium and high-resolution follow-up
spectroscopy reveals a rich variety of chemical abundances some-
what unexpected for such a no-frills CMD structure. The first low-
resolution studies of Simon and Geha (2007) and Kirby et al. (2008)
already evince the existence of appreciable ½Fe=H" spreads in the
SDSS dwarfs with the metallicity distribution stretching to extre-
mely low values. Analyzing the medium and high resolution spec-
tra of the Boo I system, Norris et al. (2010) measure the spread in
½Fe=H" of #1.7 and the ½Fe=H" dispersion of #0.4 around the mean
value of $2.55 at MV # $6. It seems that this behavior of decreas-
ing mean metallicity with luminosity while maintaining a signifi-
cant enrichment spread is representative of the UFD sample as a

Fig. 6. Distribution of the classical dwarf galaxies (blue filled circles) and the SDSS ultra-faint satellites (red filled circles), including three ultra-faint star clusters, in Galactic
coordinates. The SDSS DR8 imaging footprint is shown in grey. Dashed line marks the tentative orbit of the Sgr dwarf galaxy. Galactic l ¼ 0& , b ¼ 0& is at the centre of the
figure.

110 V. Belokurov / New Astronomy Reviews 57 (2013) 100–121

Belokurov, 2013

Discovered before SDSS 
(classical dwarfs)
Discovered with SDSS 
(ultra-faint dwarfs)

Sky Coverage of SDSS
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Survey Sensitivity

A likelihood analysis to simultaneously 
combines spatial and spectral information 
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membership probability for each star; 
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Treat spatial and spectral properties of satellite as separable PDFs (normalized 
according to the richness definition). Two color filters are sufficient for stars. 
Take into account the color uncertainty for each individual star. 

Create empirical background model from data which depends only on observed 
magnitudes. Assume density (deg-2 mag-2) to be isotropic on small patches of 
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λ = normalization = number of stars 
f = observable fraction

Figure 4. Stellar density and color–magnitude diagrams for DES J0335.6−5403. Top left: spatial distribution of stars with �g 24 mag that are within 0.1 mag of the
isochrone displayed in the lower panels. The field of view is q◦ ◦1. 5 1. 5 centered on the candidate and the stellar distribution has been smoothed with a Gaussian
kernel with standard deviation ◦0. 027. Top center: radial distribution of stars with � �g r 1 mag and �g 24 mag. Top right: spatial distribution of stars with high
membership probabilities within a q◦ ◦0. 5 0. 5 field of view. Small gray points indicate stars with membership probability less than 5%. Bottom left: the color–
magnitude distribution of stars within 0 ◦. 1 of the centroid are indicated with individual points. The density of the field within a 1° annulus is represented by the
background two-dimensional histogram in grayscale. The red curve shows a representative isochrone for a stellar population with U � 13.5 Gyr and �Z 0.0001
located at the best-fit distance modulus listed in the upper left panel. Bottom center: binned significance diagram representing the Poisson probability of detecting the
observed number of stars within the central 0 ◦. 1 for each bin of the color–magnitude space given the local field density. Bottom right: color–magnitude distribution of
high membership probability stars.

Figure 5. Analogous to Figure 4 but for DES J0344.3−4331. A large number of stars, including several probable horizontal branch members, are present at
magnitudes fainter than the �g 23 mag threshold of our likelihood analysis. This threshold was set by the rapidly decreasing stellar completeness at fainter
magnitudes. However, it is likely that extending to fainter magnitudes would cause the best-fit distance modulus of DES J0344.3−4331 to increase. Better constraints
on the properties of DES J0344.3−4331 require the stellar completeness to be robustly quantified in this regime.
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Figure 4. Stellar density and color–magnitude diagrams for DES J0335.6−5403. Top left: spatial distribution of stars with �g 24 mag that are within 0.1 mag of the
isochrone displayed in the lower panels. The field of view is q◦ ◦1. 5 1. 5 centered on the candidate and the stellar distribution has been smoothed with a Gaussian
kernel with standard deviation ◦0. 027. Top center: radial distribution of stars with � �g r 1 mag and �g 24 mag. Top right: spatial distribution of stars with high
membership probabilities within a q◦ ◦0. 5 0. 5 field of view. Small gray points indicate stars with membership probability less than 5%. Bottom left: the color–
magnitude distribution of stars within 0 ◦. 1 of the centroid are indicated with individual points. The density of the field within a 1° annulus is represented by the
background two-dimensional histogram in grayscale. The red curve shows a representative isochrone for a stellar population with U � 13.5 Gyr and �Z 0.0001
located at the best-fit distance modulus listed in the upper left panel. Bottom center: binned significance diagram representing the Poisson probability of detecting the
observed number of stars within the central 0 ◦. 1 for each bin of the color–magnitude space given the local field density. Bottom right: color–magnitude distribution of
high membership probability stars.

Figure 5. Analogous to Figure 4 but for DES J0344.3−4331. A large number of stars, including several probable horizontal branch members, are present at
magnitudes fainter than the �g 23 mag threshold of our likelihood analysis. This threshold was set by the rapidly decreasing stellar completeness at fainter
magnitudes. However, it is likely that extending to fainter magnitudes would cause the best-fit distance modulus of DES J0344.3−4331 to increase. Better constraints
on the properties of DES J0344.3−4331 require the stellar completeness to be robustly quantified in this regime.

8

The Astrophysical Journal, 807:50 (16pp), 2015 July 1 Bechtol et al.

Color
B

rig
ht

ne
ss



Alex Drlica-Wagner   |   FermilabAlex Drlica-Wagner   |   Fermilab 18

Reticulum II

DES Collaboration
4m Telescope 

DECam CCD Camera



Alex Drlica-Wagner   |   Fermilab

Re

19

Reticulum II

The first component, us, depends only on the spatial properties,
while the second component, uc, depends only on the
distribution in color–magnitude space.

We modeled the spatial distribution of satellite member stars
with an elliptical Plummer profile (Plummer 1911), following
the elliptical coordinate prescription of Martin et al. (2008a).
The Plummer profile is sufficient to describe the spatial
distribution of stars in known ultra-faint galaxies (Muñoz
et al. 2012b). The spatial data for catalog object i consist of
spatial coordinates,  B E� { , }s i i i, , while the parameters
of our elliptical Plummer profile are the centroid coordinates,
half-light radius, ellipticity, and position angle, R �s

�B E Gr{ , , , , }0 0 h .
We modeled the color–magnitude component of the signal

PDF with a set of representative isochrones for old, metal-poor
stellar populations, specifically by taking a grid of isochrones
from Bressan et al. (2012) spanning � �Z0.0001 0.001 and

U� �1 Gyr 13.5 Gyr. Our spectral data for star i consist of the
magnitude and magnitude error in each of two filters,
 T T� g r{ , , , }c i i g i i r i, , , , while the model parameters are
composed of the distance modulus, age, and metallicity
describing the isochrone, R U� �M m Z{ , , }c . To calculate
the spectral signal PDF, we weight the isochrone by a Chabrier
(2001) initial mass function (IMF) and densely sample in
magnitude–magnitude space. We then convolve the photometric
measurement PDF of each star with the PDF of the weighted
isochrone. The resulting distribution represents the predicted
probability of finding a star at a given position in magnitude–
magnitude space given a model of the stellar system.

The background density function of the field population is
empirically determined from a circular annulus surrounding
each satellite candidate ( � �◦ ◦r0 . 5 2 . 0). The inner radius of
the annulus is chosen to be sufficiently large that the stellar
population of the candidate satellite does not bias the estimate
of the field population. Stellar objects in the background
annulus are binned in color–magnitude space using a cloud-in-
cells algorithm and are weighted by the inverse solid angle of

the annulus. The effective solid angle of the annulus is
corrected to account for regions that are masked or fall below
our imposed magnitude limit of �g 23 mag. The resulting
two-dimensional histogram for the field population provides
the number density of stellar objects as a function of observed
color and magnitude ( � �deg mag2 2). This empirical determina-
tion of the background density incorporates contamination
from unresolved galaxies and imaging artifacts.
The likelihood formalism above was applied to the Y1A1

data set via an automated analysis pipeline.49 For the search
phase of the algorithm, we used a radially symmetric Plummer
model with half-light radius � ◦r 0 . 1h as the spatial kernel, and
a composite isochrone model consisting of four isochrones
bracketing a range of ages, U � {12, 13.5 Gyr}, and metalli-
cities, �Z {0.0001, 0.0002}, to bound a range of possible
stellar populations. We then tested for a putative satellite
galaxy at each location on a three-dimensional grid of sky
position (0.7 arcmin resolution; nside = 4096) and distance
modulus ( � � �M m16 24; �16 630 kpc).
The statistical significance at each grid point can be

expressed as a Test Statistic (TS) based on the likelihood ratio
between a hypothesis that includes a satellite galaxy versus a
field-only hypothesis:

 M M M�  
¢¡

� � � ¯
±°( ) ( )TS 2 log ˆ log 0 . (4)

Here, M̂ is the value of the stellar richness that maximizes the
likelihood. In the asymptotic limit, the null-hypothesis
distribution of the TS will follow a D 22 distribution with
one bounded degree of freedom (Chernoff 1954). We have
verified that the output distribution of our implementation
agrees well with the theoretical expectation by testing on
simulations of the stellar field. In this case, the local statistical
significance of a given stellar over-density, expressed in

Figure 2. Left: false color gri coadd image of the q◦ ◦0. 3 0. 3 region centered on DES J0335.6−5403. Right: stars in the same field of view with membership
probability �p 0.01i are marked with colored circles. In this color map, red signifies high-confidence association with DES J0335.6−5403 and blue indicates lower
membership probability. The membership probabilities have been evaluated using Equation (2) for the best-fit model parameters listed in Table 1.

49 The Ultra-faint Galaxy Likelihood (UGALI) code; detailed methodology
and performance to be presented elsewhere.
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4m Telescope 
DECam CCD Camera DES Collaboration

Reticulum II

isochrone. Since it is near the base of the giant branch, the
photometric uncertainties could contribute to this offset in
color, and we consider DES J033544.18−540150.0 a likely
member of Ret II.

Because the stars for which membership is plausible have
velocities quite similar to that of Ret II (and in some cases have
large uncertainties), including or excluding them from the
member sample does not have any significant effect on the
properties we derive for Ret II in Section 4. We show the

correspondence between M2FS spectroscopic members and
photometric membership probability in Figure 3.

3.3.2. GIRAFFE and GMOS

We also identify a handful of Ret II members in the GIRAFFE
and GMOS data sets that were not observed with M2FS. We use
a velocity measurement based on the Paschen lines to confirm that
the candidate blue HB (BHB) star DES J033539.85−540458.1
(Section 3.4) observed by GMOS is indeed a member of Ret II,
with a velocity of 69 ± 6 km s 1� . The GIRAFFE targets included
a bright (g 16.5_ ) star at ( , ) (03:35:23.85,2000 2000B E �

54:04:07.5)� that was omitted from our photometric catalog
and M2FS observations because it is saturated in the coadded
DES images. However, the spectrum of the star makes clear that it
is very metal-poor and is within a few km s 1� of the systemic
velocity of Ret II. While the magnitudes derived from individual
DES frames place it slightly redder than the isochrone that best
matches the lower red giant branch of Ret II, it is also located
inside the half-light radius, and is very likely a member. In fact, it
is probably the brightest star in any of the ultra-faint dwarfs.

Figure 1. (a) DES color–magnitude diagram of Reticulum II. Stars within 14 ′. 65 of the center of Ret II are plotted as small black dots, and stars selected for
spectroscopy with M2FS, GIRAFFE, and GMOS (as described in Section 2.1) are plotted as filled gray circles. Points surrounded by black outlines represent the
stars for which we obtained successful velocity measurements, and those we identify as Ret II members are filled in with red. The four PARSEC isochrones used
to determine membership probabilities are displayed as black lines. (b) Spatial distribution of the observed stars. Symbols are as in panel (a). The half-light radius
of Ret II from Bechtol et al. (2015) is outlined as a black ellipse. (c) Radial velocity distribution of observed stars, combining all three spectroscopic data sets. The
clear narrow peak of stars at v 60_ km s 1� highlighted in red is the signature of Ret II. The hatched histogram indicates stars that are not members of Ret II; note
that there are two bins containing non-member stars near v = 70 km s 1� that are over-plotted on top of the red histogram.

Figure 2. Magellan/M2FS spectra in the Mg b triplet region for three stars
near the edge of the Ret II velocity distribution. The wavelengths of two Mg
lines and an Fe line are marked in the bottom panel, and the third component
of the Mg triplet is just visible at a wavelength of 5185 Å at the right edge of
each spectrum. The spectrum of DES J033540.70−541005.1 (top) appears
similar to that of a Ret II member, but the color, spatial position, and velocity
offset of this star make that classification unlikely. The very strong Mg
absorption in DES J033405.49−540349.9 (middle), as well as the wealth of
other absorption features on the blue side of the spectrum, indicate that the
star is more metal-rich than would be expected for a system as small as Ret II.
DES J033437.34−535354.0 (bottom) is a double-lined binary star with a
velocity separation of ∼60 km s 1� . The redshifted absorption component
from the secondary star is most visible in the middle line of the Mg triplet.

Figure 3. Comparison of photometric membership probabilities determined
from a maximum-likelihood fit to the DES data and spectroscopic membership
as determined from the velocity measured by M2FS.
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Figure 5. (Left) Magellan/M2FS spectra in the Mg b triplet region for three Ret II member stars covering a range of line strengths.
From top to bottom, the stars are DES J033556.28�540316.3, DES J033454.24540558.0, and DES J033457.57540531.4. These stars span
only 0.1 mag in luminosity and 0.08 mag in g � r color, so their e↵ective temperatures and surface gravities should be very similar. Any
di↵erences in line strength therefore translate directly into chemical abundance di↵erences. The apparent emission features near 5182 Å in
the spectrum of DES J033454.24540558.0 are contamination by the Littrow ghost (Burgh et al. 2007). (Right) VLT/GIRAFFE spectra of
the bluer two CaT lines for the same stars.

SMC stars. If they are at the distance of the SMC, they
are at projected separations of 27 kpc, indicating that
they have likely been tidally stripped. The higher veloc-
ity stars have very similar velocities to the Magellanic
Stream gas a few degrees away from Ret II, and could
therefore represent the stellar counterpart of the Stream.

4.5. J-Factor

It is posited that dark matter particles could self-
annihilate to produce gamma rays (e.g., Gunn et al. 1978;
Bergström & Snellman 1988; Baltz et al. 2008). The
large dark matter content, relative proximity, and low
astrophysical foregrounds of dwarf galaxies make them
promising targets for the detection of these gamma rays.
The predicted signal from the annihilation of dark mat-
ter particles is proportional to the line-of-sight integral
through the square of the dark matter density (e.g., Baltz
et al. 2008),

J(�⌦) =

Z

�⌦

Z

l.o.s.
⇢

2
DM(r) ds d⌦0

. (2)

Here, ⇢DM(r) is the dark matter particle density, and the
integral is performed over a solid angle �⌦. The J-factor
is derived by modeling the velocities using the spheri-
cal Jeans equation, with assumptions on the theoretical
priors for the parameters that describe the dark matter
halo (e.g., Strigari et al. 2008; Essig et al. 2009; Charbon-
nier et al. 2011; Martinez 2013; Geringer-Sameth et al.
2015a). Here, we model the dark matter halo as a gen-
eralized Navarro-Frenk-White (NFW) profile (Navarro
et al. 1997), and we use flat, ‘uninformative’ priors
on the dark matter halo parameters (see Essig et al.
2009). Using this procedure, we find an integrated J-
factor for Ret II of log10(J) = 18.8 ± 0.6GeV2 cm�5

within an angular cone of radius 0.2�, and log10(J) =
18.9 ± 0.6GeV2 cm�5 within 0.5�. This latter value as-
sumes that the dark matter halo extends beyond the ra-
dius of the outermost spectroscopically confirmed star,
but truncates within the estimated tidal radius for the
dark matter halo. The quoted uncertainties are 1�, and
are estimated by modeling the posterior probability den-
sity function of log10(J) as a Gaussian. Note that the
uncertainty obtained by modeling this individual system
is larger than is obtained by modeling the entire popula-
tion of dSphs (Martinez 2013).
Several previously known ultra-faint dwarf galaxies

possess larger mean J-factors than Ret II, most notably
Segue 1, Ursa Major II, and Coma Berenices (Acker-
mann et al. 2014; Geringer-Sameth et al. 2015a; Conrad
et al. 2015). Though the velocity dispersions of Ret II
and Segue 1 are consistent within uncertainties, Ret II
is more distant (32 kpc compared to 23 kpc) and has a
larger half-light radius as measured along the major axis
(55 pc compared to 29 pc). The larger distance and larger
half-light radius imply a reduced mean J-factor relative
to Segue 1. In comparison to Ursa Major II, Ret II is
at a similar distance, but has a velocity dispersion that
is smaller by roughly a factor of two. The larger dis-
persion, and hence mass, accounts for the larger J-factor
of Ursa Major II. Coma Berenices is more distant than
Ret II (44 kpc compared to 32 kpc); however, the larger
velocity dispersion of Coma Berenices implies a slightly
larger mean J-factor.
Since Segue 1, Ursa Major II, and Coma Berenices

all possess larger J-factors than Ret II, we expect dark
matter annihilation to produce a larger gamma-ray flux
from these objects. However, no gamma-ray excess has
been associated with any of the previously known dwarf
galaxies (Ackermann et al. 2015). Given comparable

1 Night ~ $100k (+ bad weather!)
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Fig. 4.— Local Group galaxies (McConnachie 2012) and globular clusters (Harris 1996, 2010

edition) occupy distinct regions in the plane of physical half-light radius (azimuthally averaged)

and absolute magnitude. The majority of DES satellite candidates (red triangles and circles) are

more consistent with the locus of Local Group galaxies (blue squares) than with the population

of Galactic globular clusters (black “+”). Other recently reported dwarf galaxy candidates (green

diamonds) include Hydra II (Martin et al. 2015), Triangulum II (Laevens et al. 2015a), Pegasus III

(Kim et al. 2015a), Draco II and Sagittarius II (Laevens et al. 2015b). Several outer halo star

clusters and systems of ambiguous classification are indicated with “⇥” symbols: Koposov 1 and

Koposov 2 (Koposov et al. 2007; Paust et al. 2014), Segue 3 (Belokurov et al. 2010; Fadely et al.

2011; Ortolani et al. 2013), Muñoz 1 (Muñoz et al. 2012), Balbinot 1 (Balbinot et al. 2013),

Laevens 1 (Laevens et al. 2014; Belokurov et al. 2014), Laevens 3 (Laevens et al. 2015b), Kim 1

and Kim 2 (Kim & Jerjen 2015a; Kim et al. 2015b), and DES 1 (Luque et al. 2015). Dashed lines

indicate contours of constant surface brightness at µ = {25, 27.5, 30} mag arcsec�2.
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Fig. 1.— Locations of the eight new dwarf galaxy candidates reported here (red triangles) along

with nine previously reported dwarf galaxy candidates in the DES footprint (red circles; Bechtol

et al. 2015; Koposov et al. 2015a; Kim & Jerjen 2015b), five recently discovered dwarf galaxy

candidates located outside the DES footprint (green diamonds; Laevens et al. 2015a; Martin et al.

2015; Kim et al. 2015a; Laevens et al. 2015b), and twenty-seven Milky Way satellite galaxies known

prior to 2015 (blue squares; McConnachie 2012). Systems that have been confirmed as satellite

galaxies are individually labeled. The figure is shown in Galactic coordinates (Mollweide projection)

with the coordinate grid marking the equatorial coordinate system (solid lines for the equator and

zero meridian). The gray scale indicates the logarithmic density of stars with r < 22 from SDSS

and DES. The two-year coverage of DES is ⇠ 5000 deg2 and nearly fills the planned DES footprint

(outlined in red). For comparison, the Pan-STARRS 1 3⇡ survey covers the region of sky with

�2000 > �30� (Laevens et al. 2015b).

Blue   - Previously discovered satellites 
Green - Discovered in 2015 with  
             PanSTARRS/SDSS

Red outline - DES footprint 
Red circles - DES Y1 satellites 
Red triangles - DES Y2 satellites

DES Collaboration [1503.02584]



DES Satellites

24

DES J2038–4609 (Ind II) and DES J0117–1725 (Cet II), are
lower confidence and reside in more complicated regions. In
Table 1 we report the coordinates and detection significances of
each of these objects.

5. CANDIDATE CHARACTERIZATION

In this section, we describe the iterative procedure used to
characterize each of the eight candidate stellar systems. When
fitting the new candidates, we applied a brighter magnitude
threshold, g < 23mag, to mitigate the impact of stellar
incompleteness. The results of our characterization are shown
in Tables 1 and 2.

We began by simultaneously fitting the morphological
parameters and distance modulus of each candidate following
the procedure described in Section 4. Best-fit values were
derived from the marginalized posterior distribution and the
morphological parameters were temporarily fixed at these
values. We then ran a MCMC chain simultaneously sampling
the distance, age, metallicity, and richness, assuming flat priors
on each parameter. Significant correlations between these
parameters were found, and in some cases the age and
metallicity were poorly constrained (see below). To assess the
error contribution from intrinsic uncertainty in the isochrone,
we resample the posterior distribution using the Dartmouth
isochrone family (Dotter et al. 2008). In general, the best-fit
distance moduli agree to within 0.1mag when the data were fit

Figure 3. Cartesian projection of the density of stars observed in both the g- and r-bands with g < 23 and g − r < 1 over the DES Y2Q1 footprint (∼5000 deg2).
Globular clusters are marked with “+” symbols (Harris 1996, 2010 edition), two faint outer halo clusters are marked with “×” symbols (Kim et al. 2015b; Luque et al.
2015), Local Group galaxies known prior to DES are marked with blue squares (McConnachie 2012), dwarf galaxy candidates discovered in Y1 DES data are marked
with red outlined circles, and the Y2 stellar systems are marked with red triangles. The periphery of the LMC can be seen in the southeast corner of the footprint, while
the Galactic stellar disk can be seen on the eastern and western edges.

Table 1
Detection of Ultra-faint Galaxy Candidates

Name α2000 δ2000 m − M rh ah ò f Map Sig. TS Scan �pi
(deg) (deg) (′) (′) (σ)

DES J2204–4626 (Gru II) 331.02 −46.44 18.62 ± 0.21 �
�6.0 0.5

0.9 K <0.2 K 15.7 369 161
DES J2356–5935 (Tuc III)a 359.15 −59.60 17.01 ± 0.16 �

�6.0 0.6
0.8 K K K 11.1 390 168

DES J0531–2801 (Col I)b 82.86 −28.03 21.30 ± 0.22 �
�1.9 0.4

0.5 K <0.2 K 10.5 71 33
DES J0002–6051 (Tuc IV) 0.73 −60.85 18.41 ± 0.19 �

�9.1 1.4
1.7

�
�11.8 1.8

2.2
�
�0.4 0.1

0.1 11 ± 9 8.7 287 134
DES J0345–6026 (Ret III)b 56.36 −60.45 19.81 ± 0.31 �

�2.4 0.8
0.9 K <0.4 K 8.1 56 22

DES J2337–6316 (Tuc V) 354.35 −63.27 18.71 ± 0.34 �
�1.0 0.3

0.3
�
�1.8 0.6

0.5
�
�0.7 0.2

0.1 30 ± 5 8.0 129 24
DES J2038–4609 (Ind II)b 309.72 −46.16 21.65 ± 0.16 �

�2.9 1.0
1.1 K <0.4 K 6.0 32 22

DES J0117–1725 (Cet II) 19.47 −17.42 17.38 ± 0.19 �
�1.9 0.5

1.0 K <0.4 K 5.5 53 21

Notes. Characteristics of satellite galaxy candidates discovered in DES Y2 data. Best-fit parameters from the maximum-likelihood analysis assume a Bressan et al.
(2012) isochrone. Uncertainties come from the highest density interval containing 68% of the posterior distribution. The uncertainty on the distance modulus ( �m M )
also includes systematic uncertainties coming from the choice of theoretical isochrone and photometric calibration (Section 5). The azimuthally averaged half-light
radius (rh) is quoted for all candidates. For systems with evidence for asphericity (Bayes’ factor > 3), we quote the ellipticity (ò), the position angle (f), and the length
of the semimajor axis of the ellipse containing half of the light ( �� �a r 1h h ). Upper limits on the ellipticity are quoted for other candidates at 84% confidence.
“Map Sig.” refers to detection significance of the candidate from the stellar density map search method (Section 3.1). “TS Scan” refers to the significance (Equation (4)
in Bechtol et al. 2015) from the likelihood scan (Section 3.3). Σpi is the estimated number of satellite member stars in the DES Y2Q1 catalog with g < 23 mag.
a Fit with a spherically symmetric Plummer profile due to the possible presence of tidal tails (Section 6.1).
b Fit with a composite isochrone: U = {12 Gyr , 13.5 Gyr}, Z = {0.0001, 0.0002} (Section 5).
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Figure 10. Maximum likelihood model of the satellites of the SMC (left) and LMC (right). Top row: on-sky (LMS, BMS) projection
of (i) simulated satellite distribution (coloured contours), (ii) the LMC/SMC (large/small white circles), (iii) DES satellites (coloured
symbols defined in Fig. 9), (iv) DES footprint (solid line), (v) distribution of HI gas (faint contours), (vi) 20� either side of the Galactic
disk (dashed lines). Middle/bottom rows: distribution in LMS against Galactocentric r for bins 5� < BMS < 25� (middle) and
�30� < BMS < �10� (bottom). Contours step roughly in factors of 2 in projected density, with arbitrary units and colours comparable
per column. For the maximum likelihood solution of ⇠ 70 Magellanic satellites, the expected number of satellites observable by DES is
annotated in each panel.

has already serendipitously unearthed the Hydra II dwarf
galaxy (Martin et al. 2015) at a position consistent with the
LMC leading tail. The Galactocentric distances of our sim-
ulated leading arm of satellites peak in the range 40-80 kpc,
albeit extending as far as 300 kpc.

In the top left panel of Fig. 10, we also see that that
the predicted on-sky location of the highest concentration of
SMC satellites is o↵set from the current position of the SMC.
This is caused by a recent interaction between the LMC and
SMC (100-300 Myr ago, 5-10 kpc separation) which unbinds
the SMC’s satellite population from its host. This close en-
counter is generically predicted over our entire parameter
space, as a consequence of the relative orientations of the
LMC and SMC velocity vectors (see also K13).

While our model can reproduce the number of satel-
lites discovered, there is tension regarding their distribution
within the DES footprint. The top right panel of Fig. 10
shows that our model predicts a concentration of satellites
within 10 kpc of the LMC, which is not present in the data.
This might be a result of our over-simplistic treatment of the

tidal disruption of satellites. The stellar disk of the LMC ex-
tends beyond 10 kpc from its centre (e.g. van der Marel &
Kallivayalil 2014), hence satellite destruction is likely to oc-
cur at distances greater than the 5 kpc zone-of-avoidance
we have naively imposed in our model. For our maximum
likelihood model, the fraction of particles today within 10,
15 and 20 kpc of the LMC is 3, 8 and 14 % respectively; ac-
counting for destruction of satellite which have, at any time,
entered within these distances would reduce our prediction
of the total number of Magellanic satellites by at least these
proportions.

A further failure of our model is the under-prediction
of satellites in the range �30�

< BMS < �10�. Our maxi-
mum likelihood model predicts 1.2 satellites in this range,
whereas 7 are observed. Even allowing for the possibility
that some of these belong to a background MW population,
this suggests an over-density of satellites in a small spa-
tial region compared to expectations from the disruption of
an isotropic LMC satellite population. Furthermore, despite
their on-sky proximity to the SMC, Fig. 9 shows that 5 of
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�30� < BMS < �10� (bottom). Contours step roughly in factors of 2 in projected density, with arbitrary units and colours comparable
per column. For the maximum likelihood solution of ⇠ 70 Magellanic satellites, the expected number of satellites observable by DES is
annotated in each panel.
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Figure 10. Maximum likelihood model of the satellites of the SMC (left) and LMC (right). Top row: on-sky (LMS, BMS) projection
of (i) simulated satellite distribution (coloured contours), (ii) the LMC/SMC (large/small white circles), (iii) DES satellites (coloured
symbols defined in Fig. 9), (iv) DES footprint (solid line), (v) distribution of HI gas (faint contours), (vi) 20� either side of the Galactic
disk (dashed lines). Middle/bottom rows: distribution in LMS against Galactocentric r for bins 5� < BMS < 25� (middle) and
�30� < BMS < �10� (bottom). Contours step roughly in factors of 2 in projected density, with arbitrary units and colours comparable
per column. For the maximum likelihood solution of ⇠ 70 Magellanic satellites, the expected number of satellites observable by DES is
annotated in each panel.
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LMC leading tail. The Galactocentric distances of our sim-
ulated leading arm of satellites peak in the range 40-80 kpc,
albeit extending as far as 300 kpc.
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the predicted on-sky location of the highest concentration of
SMC satellites is o↵set from the current position of the SMC.
This is caused by a recent interaction between the LMC and
SMC (100-300 Myr ago, 5-10 kpc separation) which unbinds
the SMC’s satellite population from its host. This close en-
counter is generically predicted over our entire parameter
space, as a consequence of the relative orientations of the
LMC and SMC velocity vectors (see also K13).

While our model can reproduce the number of satel-
lites discovered, there is tension regarding their distribution
within the DES footprint. The top right panel of Fig. 10
shows that our model predicts a concentration of satellites
within 10 kpc of the LMC, which is not present in the data.
This might be a result of our over-simplistic treatment of the
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Kallivayalil 2014), hence satellite destruction is likely to oc-
cur at distances greater than the 5 kpc zone-of-avoidance
we have naively imposed in our model. For our maximum
likelihood model, the fraction of particles today within 10,
15 and 20 kpc of the LMC is 3, 8 and 14 % respectively; ac-
counting for destruction of satellite which have, at any time,
entered within these distances would reduce our prediction
of the total number of Magellanic satellites by at least these
proportions.

A further failure of our model is the under-prediction
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is located at low Galactic latitudes where the elevated
foreground stellar density and interstellar extinction may
present additional challenges. Under the assumption that Pan-
STARRS covers the full sky with E2000 > −30°, ∼2000 deg2

overlap with DES Y2Q1. This area of the DES footprint
includes two new candidates, one of which has a large enough
surface brightness to likely have been detected at SDSS depth
(DES J0531–2801, see Table 4). These two candidates are
located in a region of the sky that would be observed at a
relatively high airmass by Pan-STARRS and may suffer from
decreased detection efficiency.

From this analysis, we conclude that the distribution of
satellites around the Milky Way is unlikely to be isotropic, and
that a plausible component of this anisotropy is a population of
satellites associated with the Magellanic Clouds. However,
several alternative explanations for anisotropy in the Milky
Way satellite distribution exist. For example, Milky Way
satellites could be preferentially located along a three-
dimensional planar structure, as has been suggested by many
authors, starting with Lynden-Bell (1976). This proposed
planar structure encompasses the Magellanic Clouds and many
of the classical and SDSS satellites. Pawlowski et al. (2015)
suggest that the satellites discovered in Y1 DES data are also
well aligned with this polar structure. We note that the Y2
discoveries presented here include several objects near the
SMC and may reduce the fraction of objects in close proximity
to the proposed plane. An additional possibility is that the
satellites are associated with the orbit of the Magellanic System
and are not isotropically distributed around the Magellanic
Clouds themselves (Yozin & Bekki 2015). The DES footprint
covers only a fraction of the region surrounding the Magellanic
Clouds and additional sky coverage may yield more satellites
with similar proximity to the Magellanic system and/or help to
distinguish between these various scenarios. Measurements of
the relative motions of the satellites and further theoretical
work will also help clarify the physical relationships between
these stellar systems.

7. CONCLUSIONS

We report the discovery of six new ultra-faint galaxy
candidates in a combined data set from the first two years of
DES covering ∼5000 deg2 of the south Galactic cap. Two
additional candidates are identified in regions with incomplete
or non-uniform coverage and should be viewed with lower
confidence until additional imaging is obtained. The new
satellites are faint (MV > −4.7mag) and span a wide range of
physical sizes (17 pc < r1/2 < 181 pc) and heliocentric
distances (25 kpc < De < 214 kpc). All are low surface
brightness systems similar to the known ultra-faint satellite
galaxies of the Milky Way, and most possess physical sizes that
are large enough (>40 pc) to be provisionally classified as
galaxies. Spectroscopic observations are needed to better
understand and unambiguously classify the new stellar
systems. A total of 17 confirmed and candidate ultra-faint
galaxies have been found in the first two years of DES.
Roughly half of the DES systems are sufficiently distant and/or
faint to have eluded detection at survey depths comparable
to SDSS.
The DES satellites are concentrated in the southern half of

the survey footprint in proximity to the Magellanic Clouds. In
addition, we find three satellites clustered in a Tucana group,
each of which is within <10 kpc of the group centroid. We find
that the DES data alone exclude (p < 10−3) an isotropic
distribution of satellites within the Milky Way halo, and that
the observed distribution can be well, although not uniquely,
explained by a model in which several of the observed DES
satellites are associated with the Magellanic system. Under the
assumption that the total satellite population can be modeled by
isotropic distributions around the Milky Way, LMC, and SMC,
we estimate that a total of ∼100 ultra-faint satellites with
comparable physical characteristics to those detected by DES
might exist over the full sky, with 20%–30% of these systems
being spatially associated with the Magellanic Clouds.
Milky Way satellite galaxies are considered a unique

population for studying the particle nature of dark matter due
to their proximity, characteristically large mass-to-light ratios,

Figure 16. Maximum-likelihood fit to the spatial distribution of satellites for a model including isotropic, LMC, and SMC components (Section 6.3). The horizontal
axis represents the total number of satellites detectable at DES Y2Q1 depth integrated over the entire sky (not including the classical dwarf galaxies and detection
inefficiency near the Galactic plane). The vertical axis represents the fraction of these satellites associated with the Magellanic Clouds. Left: the 1σ, 2σ, and
3σ likelihood contours when considering only DES data. Center: 1σ contours for different values of the LMC and SMC truncation radius (rt) and the slope of the
radial profile (α). Right: contours of the likelihood function when SDSS observations are included. Red contours (1σ, 2σ, 3σ) assume that 50% of the satellites
discovered in DES would have been detected if they were located in the SDSS footprint. This value matches the estimated detection efficiency from Table 4. We show
the sensitivity of our results to the SDSS/DES detection ratio with the dark blue contour (80% detection ratio) and the light blue contour (20% detection ratio).
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With DES sensitivity expect  
100+ satellites over the entire sky

30+ of these satellites  
contributed by the LMC/SMC
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STARRS covers the full sky with E2000 > −30°, ∼2000 deg2
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surface brightness to likely have been detected at SDSS depth
(DES J0531–2801, see Table 4). These two candidates are
located in a region of the sky that would be observed at a
relatively high airmass by Pan-STARRS and may suffer from
decreased detection efficiency.
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satellites associated with the Magellanic Clouds. However,
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suggest that the satellites discovered in Y1 DES data are also
well aligned with this polar structure. We note that the Y2
discoveries presented here include several objects near the
SMC and may reduce the fraction of objects in close proximity
to the proposed plane. An additional possibility is that the
satellites are associated with the orbit of the Magellanic System
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Clouds and additional sky coverage may yield more satellites
with similar proximity to the Magellanic system and/or help to
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work will also help clarify the physical relationships between
these stellar systems.
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confidence until additional imaging is obtained. The new
satellites are faint (MV > −4.7mag) and span a wide range of
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galaxies. Spectroscopic observations are needed to better
understand and unambiguously classify the new stellar
systems. A total of 17 confirmed and candidate ultra-faint
galaxies have been found in the first two years of DES.
Roughly half of the DES systems are sufficiently distant and/or
faint to have eluded detection at survey depths comparable
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that the DES data alone exclude (p < 10−3) an isotropic
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the observed distribution can be well, although not uniquely,
explained by a model in which several of the observed DES
satellites are associated with the Magellanic system. Under the
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Looking Forward

Figure 5.  A graph showing the time spent observing during the night color-coded 
by filter. The enclosing curves indicate the time of civil (−6°), nautical (−12°), and 
astronomical (−18°) twilight. Note that only z- and y-filters are used between 
astronomical and nautical twilight. The Moon’s illumination (in percent) is indicated 
by the arbitrarily scaled white curve at the bottom of the plot. 

The LSST Operations Simulator models the telescope’s design-specific opto-mechanical system performance and site-specific conditions to simulate how observations may be obtained during a 10-year survey. We have found that a remarkable range of 
science programs are compatible with a single feasible cadence. The Simulator incorporates detailed models of the telescope and dome, the camera, weather and an improved model for scheduled and unscheduled downtime, as well as a scheduling strategy 
based on ranking requests for observations from a small number of observing modes attempting to optimize the key science objectives. Each observing mode is driven by a specification which ranks field-filter combinations of target fields to observe next. The 
output of the simulator is a detailed record of the activity of the telescope - such as position on the sky, slew activities, weather and various types of downtime - stored in a MySQL database. Sophisticated tools are required to mine this data in order to assess 
the degree of success of any simulated survey in some detail. An analysis tool has been created (SSTAR) which generates a standard report describing the basic characteristics of a simulated survey; an analysis framework is being designed to allow for the 
inter-comparison of one or more simulated surveys and to perform more complex analyses. Visualization software is being used to interactively explore the survey history and to prototype reports for the analysis framework, and we are working with the 
ASCOT team (http://ascot.astro.washington.edu) to determine the feasibility of creating our own interactive tools. The next phase of simulator development will include look-ahead to continue investigating the trade-offs of addressing multiple science goals 
within a single LSST survey. 

C.E.$Petry1,$M.$Miller2,$K.$H.$Cook3,$S.$Ridgway2,$S.$Chandrasekharan2,$R.$L.$Jones4,$K.$S.$Krughoff4,$Z.$Ivezic4,$V.$Krabbendam2$$
!1Univ.!of!Arizona,!2Na1onal!Op1cal!Astronomy!Observatory,!3Large!Synop1c!Survey!Telescope,!4Univ.!of!Washington!

  Demonstrated the need for a 9.6 deg2 field of view. 
  Motivated the need for 5 filters in dewar instead of 4 filters based on 

filter usage during each night. 
  Provided survey coverage statistics by site to the site selection 

committee. 
  Assessed the impact on the survey of various telescope changes, 

such as dome crawl. 
  Supported engineering requirements analysis. 

The Operations Simulator creates a 10-year survey of the available sky 
primarily with a universal cadence. Post-processing and analysis tools  assess 
the ability of the survey to meet sky coverage and revisit requirements specified 
by each of the LSST key science programs (see Tyson et al., this session). 

THE OPERATIONS SIMULATOR VISUALIZATION, ANALYSIS & REPORTING 

Figure 7.  The number of visits with single visit depth (magnitudes) in each 
filter. The legend shows 25th, 50th (median), and 75th percentiles for each 
curve. The tickmarks above each curve indicate the value of single visit depth in 
ideal seeing and an airmass of 1.0. 

Single Visit Depth 

Figure 10.  The number of fields with co-added depth in each filter. The legend 
shows 25th, 50th (median), and 75th percentiles for each curve. 

Co-Added Depth 

Figure 6.  An example of a survey diagnostic. This plot shows that observations 
during an arbitrary lunar cycle are made using bluer filters in darker skies (low 
Moon illumination or Moon is set) and redder filters  when the sky is brighter. 
The y-filter is taken out of the camera during new moon when the u-filter is put 
in, so there are no y-observations during low moon illumination. 

Correlation between Sky Brightness & Filter Choice 

Figure 8.  A map of the difference between the co-added depth calculated for 
each field and the design specification for the Wide-Fast-Deep co-added depth 
at zenith. Positive values exceed this ideal specification. 

Co-Added Depth Compared to a Zenith Depth Spec 

Figure 1.  A graphical summary of observing constraints for the LSST survey 
from Cerro Pachon, in equatorial (top) and galactic coordinates (bottom). The 
two dashed blue lines outline the 24,000 deg2 region for which the minimum 
airmass reaches values <1.4. The galactic plane regions with the highest stellar 
density are enclosed by solid red lines and include 1,000 deg2. For the Wide-
Fast-Deep (WFD) observing program, we use 18,000 of the possible 24,000 
deg2 to meet the Science Requirements Document (SRD) design goal.  The 
WFD science program is designed to provide data for cosmology, transients 
and moving objects. 

SURVEY STRATEGY 

Figure 9.  The number of visits acquired for each field is plotted in Hammer-
Aitoff projection for each filter. 

Number of Visits to Each Field 

Inventory of Observation Time in 10-Year Survey 

Coverage on the Sky 

Figure 2.  The number of visits obtained in each field in the r-filter for the first 
year of a survey is indicated by the shaded areas. Each of the areas of interest 
(labeled) has a specific cadence definition. It should be noted that this is the 
spatial distribution of the number of visits in the first year of a survey, and will 
not be as uniform as for the full 10-year survey (see Figure 9). 

Figure 3.  A conceptual model of the Operations Simulator software.  In any 
simulated survey, an observing target is chosen based on the current sky 
conditions, the time needed to slew to candidate fields, and the simulated 
observing history, as well as by weighing the needs of all active science 
observing modes. 

BASELINE / REFERENCE SURVEY – OPSIM3.61 

Constraints 

There have been three major advancements: 

  Improved scheduled downtime implemented with a user-settable 
configuration file having parameters for timing and duration.  

  Implementation of random downtime through addition of a tool which 
generates a sequence of random downtime intervals.  

  Improved execution speed for a simulation by changing the way the 
cloud and seeing data is accessed. 

Figure 4.  A conceptual model for the current standard analysis tools, the 
Simulated Survey Tools for Analysis and Reporting (SSTAR).  The tool 
accesses the survey history generated by the Simulator, creates a number of 
science metrics, and outputs a report. 

The static SSTAR standard report is a useful initial characterization of a simulated 
survey and contains analyses which compare to the design and stretch specs 
from the SRD. To more fully assess how well a survey meets a particular science 
goal, the development of science metrics is needed (see Chandrasekharan et 
al., this session).  The process of making sense of the data requires the ability to 
explore and analyze it in an interactive way, and to communicate and 
collaborate about the results. To this end we are 

  Working with Science Collaborations to develop figures of merit. 

  Designing an efficient and extensible framework for  the figures of merit. 
  Enabling comparisons between simulated surveys. 
  Using visualization software for fast analysis and rapid prototyping. 
  Working with the ASCOT Team to explore the feasibility of creating our own 

interactive analysis tools (http://ascot.astro.washington.edu). 

  Develop multiple scheduling algorithms or strategies. 
  Expand LSST observing modes (e.g., more flexible cadences). 
  Experiment with dithering algorithms. 
  Include higher fidelity sky brightness models (e.g., twilight & 

scattered light). 
  Implement an improved weather model. 
  Include logic to plan observations based on upcoming events such 

as sunrise, downtime or cloudy weather (not trivial). 

Future Work 

Achievements 

Software 

For more information about cadence design and the science programs, please 
visit our public website at  http://www.lsst.org/lsst/opsim 

Science Collaboration members can find data sets linked from the Science Wiki 
and at  https://www.lsstcorp.org/opsim/home 

LSST

DES

MagLiteS

• Increased sensitivity: fainter systems 
with large angular sizes 
• Do galaxies extend to even lower 

surface brightness? 
• Are there very nearby ultra-faint 

dwarf galaxies?

• A large spectroscopic campaign is 
underway to classify and characterize 
newly discovered systems 

• Future sky coverage: 
• DES Y3+: a few hundred deg2, 

better data reduction, greater 
sensitivity 

• Additional DECam observations 
outside of DES (e.g., MagLiteS) 

• LSST: 20,000 deg2  
(and much greater sensitivity)



possibly hundreds by LSST [185, 186], however many of these dSphs would be more distant and have
correspondingly smaller J factors. Even so, LSST is still likely to contribute many dSphs with J factors
above 1019 GeV�2 cm�5, and is also likely to contribute at least some dSphs with larger J factors than any
discovered by DES [187].

In practice, the distribution of J factors for the DES dSphs has been similar to previously discovered
dSphs, in spite of the greater depth of the DES survey. This could reflect that the dwarf galaxy luminosity
function continues below the faintest objects discovered by SDSS, or it could simply be that the DES survey
region has an excess of dSphs, because of the influence of the nearby Magellanic clouds.

We will take 60 total dSphs as a conservative estimate of the total number of dSphs that can be used
as targets for LAT searches, i.e., having J factors that are large enough and well determined enough to
contribute the sensitivity of a joint analysis.

As an all-sky monitor, the LAT has already, and will continue to, observe the new targets for the duration
of its lifetime. All that is required to incorporate them into a joint analysis are locations and J factors and
their uncertainties. To project the increased sensitivity that will result, we simulated 200 realizations of our
entire search using the “ROI-specific photon simulations” and “Binned model map simulations” described
in App. D but duplicated our target set3 up to three times to reach 60 in total. The e↵ect of additional
targets on the search sensitivity is illustrated in Fig. 15.
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dSphs: Ackermann+ (2015)

Thermal Relic Cross Section
(Steigman+ 2012)

Figure 15: Projected upper limits on the WIMP annihilation cross section from the joint analysis of dSphs as a function of
the size of the dSph sample on the assumption of 6- (left) and 15-year (right) data sets with P8R2 SOURCE data. The solid
black curve shows the observed limit from the analysis of 15 known dSphs with 6 years of P8R2 SOURCE data [5]. Projections
correspond to the median expected limit for the given number of dSphs and observation period from 200 simulated realizations
of the entire search (see text for details).

We also examined how the expected sensitivity scales with time for di↵erent masses and annihilation
channels. Fig. 16 shows the mean of the ratio of expected limits for all of the simulated dSphs. Because
of the softer spectrum in the bb̄ channel, the improvement in that channel is close to the expectation for
a background-limited search (i.e., it scales as

p

t) for low masses, improves with increasing mass, but does
not reach the linear scaling we would expect for a purely signal limited search. On the other hand, in the
harder ⌧+⌧� channel, the scaling behavior transitions from the background limited to signal limited cases
around 100 GeV.

The slope of the projected upper limit curve near 100 GeV is close to one (⇠ 1.1 to 1.2 ) cm3 s�1/ GeV.
The mass for which the thermal relic cross section will be excluded scales as the inverse of the slope times
the improvement on the limits on h�vi. This results in considerable extension of the mass range with limits
at or below the thermal relic cross section with additional data, up to > 400 GeV (> 200 GeV) in the bb̄
(⌧+⌧�) channel with 60 dSphs and 15 years of data, see Fig.17.

3The targets were placed at random locations and with J factors (and J factor uncertainties) sampled from the posterior
distribution.
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Looking Forward

• The LAT continues to survey the  
entire gamma-ray sky 
• Expect sensitivity to thermal relic 

DM with a mass up to 400 GeV 
• Dwarfs will provide a sensitive test 

of DM interpretations of the 
Galactic Center excess

Charles et al. [1605.02016]

• A large spectroscopic campaign is 
underway to classify and characterize 
newly discovered systems 

• Future sky coverage: 
• DES Y3+: a few hundred deg2, 

better data reduction, greater 
sensitivity 

• Additional DECam observations 
outside of DES (e.g., MagLiteS) 

• LSST: 20,000 deg2  
(and much greater sensitivity)
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Reticulum II and  
the Origin of Heavy Elements

29

Reticulum II and the origin of heavy 
elements — an r-process galaxy?

35

Rapid absorption of free neutrons during explosive event 
Possible sites: core-collapse SNe, neutron star mergers 

???

Observed excess of r-process elements in Ret II relative to other ultra-faint dwarfs 
(by factor >100) suggests enrichment by a single (rare) event 

→ Consistent with neutron star merger hypothesis



Reticulum II and  
the Origin of Heavy Elements
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Reticulum II and the origin of heavy 
elements — an r-process galaxy?

34

Using europium as 
representative r-process element

Neutron-capture abundance 
patterns for 4 brightest Ret II stars

r-process
s-process

Ji et al. 2015 
arXiv:1512.01558



Gamma-ray Emission  
Towards Reticulum II

31

Most significant gamma-ray excess for DES Y1 targets peaks  
at 2 to 10 GeV and is associated with the nearby object Reticulum II

Gamma-ray Emission  
towards Reticulum II

1

Geringer-Sameth et al. 2015 
arXiv:1503.02320

Hooper & Linden 
arXiv:1503.06209

LAT !
Data Set

Local !
Significance

Post-trials for DM mass 
and annihilation channel 

Fermi-LAT + DES Pass 8 2.2 ! 1.65 ! 

Geringer-Sameth et al. Pass 7 2.8 ! 2.3 !
Geringer-Sameth et al. Pass 8 2.0 ! 1.6 !

Hooper & Linden Pass 7 3.2 ! No trials, use best-fit from 
Galactic Center

Most significant gamma-ray excess for any new target found at   
gamma-ray energies between 2 to 10 GeV in the direction of Reticulum II  

Consistency with DM interpretation depends in part on J-factor  
relative to other dSphs

LAT & DES Collaborations 
Drlica-Wagner et al. 2015 

arXiv:1503.02632

Also, possible blazar PMN J0335−5046 located ~0.1 deg away

See talk by S. Koushiappas

Consistency with a DM interpretation depends on the  
J-factor of Reticulum II relative to other dSphs



Reticulum II: 
Spectroscopy Campaign
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Magellan/M2FS Gemini/GMOS VLT/GIRAFFE

9

Figure 5. (Left) Magellan/M2FS spectra in the Mg b triplet region for three Ret II member stars covering a range of line strengths.
From top to bottom, the stars are DES J033556.28�540316.3, DES J033454.24540558.0, and DES J033457.57540531.4. These stars span
only 0.1 mag in luminosity and 0.08 mag in g � r color, so their e↵ective temperatures and surface gravities should be very similar. Any
di↵erences in line strength therefore translate directly into chemical abundance di↵erences. The apparent emission features near 5182 Å in
the spectrum of DES J033454.24540558.0 are contamination by the Littrow ghost (Burgh et al. 2007). (Right) VLT/GIRAFFE spectra of
the bluer two CaT lines for the same stars.

SMC stars. If they are at the distance of the SMC, they
are at projected separations of 27 kpc, indicating that
they have likely been tidally stripped. The higher veloc-
ity stars have very similar velocities to the Magellanic
Stream gas a few degrees away from Ret II, and could
therefore represent the stellar counterpart of the Stream.

4.5. J-Factor

It is posited that dark matter particles could self-
annihilate to produce gamma rays (e.g., Gunn et al. 1978;
Bergström & Snellman 1988; Baltz et al. 2008). The
large dark matter content, relative proximity, and low
astrophysical foregrounds of dwarf galaxies make them
promising targets for the detection of these gamma rays.
The predicted signal from the annihilation of dark mat-
ter particles is proportional to the line-of-sight integral
through the square of the dark matter density (e.g., Baltz
et al. 2008),

J(�⌦) =

Z

�⌦

Z

l.o.s.
⇢

2
DM(r) ds d⌦0

. (2)

Here, ⇢DM(r) is the dark matter particle density, and the
integral is performed over a solid angle �⌦. The J-factor
is derived by modeling the velocities using the spheri-
cal Jeans equation, with assumptions on the theoretical
priors for the parameters that describe the dark matter
halo (e.g., Strigari et al. 2008; Essig et al. 2009; Charbon-
nier et al. 2011; Martinez 2013; Geringer-Sameth et al.
2015a). Here, we model the dark matter halo as a gen-
eralized Navarro-Frenk-White (NFW) profile (Navarro
et al. 1997), and we use flat, ‘uninformative’ priors
on the dark matter halo parameters (see Essig et al.
2009). Using this procedure, we find an integrated J-
factor for Ret II of log10(J) = 18.8 ± 0.6GeV2 cm�5

within an angular cone of radius 0.2�, and log10(J) =
18.9 ± 0.6GeV2 cm�5 within 0.5�. This latter value as-
sumes that the dark matter halo extends beyond the ra-
dius of the outermost spectroscopically confirmed star,
but truncates within the estimated tidal radius for the
dark matter halo. The quoted uncertainties are 1�, and
are estimated by modeling the posterior probability den-
sity function of log10(J) as a Gaussian. Note that the
uncertainty obtained by modeling this individual system
is larger than is obtained by modeling the entire popula-
tion of dSphs (Martinez 2013).
Several previously known ultra-faint dwarf galaxies

possess larger mean J-factors than Ret II, most notably
Segue 1, Ursa Major II, and Coma Berenices (Acker-
mann et al. 2014; Geringer-Sameth et al. 2015a; Conrad
et al. 2015). Though the velocity dispersions of Ret II
and Segue 1 are consistent within uncertainties, Ret II
is more distant (32 kpc compared to 23 kpc) and has a
larger half-light radius as measured along the major axis
(55 pc compared to 29 pc). The larger distance and larger
half-light radius imply a reduced mean J-factor relative
to Segue 1. In comparison to Ursa Major II, Ret II is
at a similar distance, but has a velocity dispersion that
is smaller by roughly a factor of two. The larger dis-
persion, and hence mass, accounts for the larger J-factor
of Ursa Major II. Coma Berenices is more distant than
Ret II (44 kpc compared to 32 kpc); however, the larger
velocity dispersion of Coma Berenices implies a slightly
larger mean J-factor.
Since Segue 1, Ursa Major II, and Coma Berenices

all possess larger J-factors than Ret II, we expect dark
matter annihilation to produce a larger gamma-ray flux
from these objects. However, no gamma-ray excess has
been associated with any of the previously known dwarf
galaxies (Ackermann et al. 2015). Given comparable

Magellan/M2FS VLT/GIRAFFE

Simon et al. 2015 (DES Collaboration)

2h 3.7h 1h



Reticulum II: 
New Dwarf Galaxy

• Velocity peak indicative of a gravitationally bound object 
• Dynamical mass calculated from the width of the 

velocity dispersion (width of the velocity peak) 
• Metallicity spread also indicative of deep gravitational 

potential 
• Every measured characteristic of Reticulum II is 

consistent with the known population of dwarf galaxies

5

Figure 1. (a) DES color-magnitude diagram of Reticulum II. Stars within 14.650 of the center of Ret II are plotted as small black dots,
and stars selected for spectroscopy with M2FS, GIRAFFE, and GMOS (as described in §2.1) are plotted as filled gray circles. Points
surrounded by black outlines represent the stars for which we obtained successful velocity measurements, and those we identify as Ret II
members are filled in with red. The four PARSEC isochrones used to determine membership probabilities are displayed as black lines. (b)
Spatial distribution of the observed stars. Symbols are as in panel (a). The half-light radius of Ret II from Bechtol et al. (2015) is outlined
as a black ellipse. (c) Radial velocity distribution of observed stars, combining all three spectroscopic data sets. The clear narrow peak of
stars at v ⇠ 60 km s�1 highlighted in red is the signature of Ret II. The hatched histogram indicates stars that are not members of Ret II;
note that there are two bins containing non-member stars near v = 70 km s�1 that are over-plotted on top of the red histogram..

twilight sky spectra. We fit these twilight spectra with
a high resolution solar template spectrum. The scatter
in velocity from fiber to fiber was  0.20 km s�1, so
we conclude that the internal velocity errors over short
timescales on an individual frame (incorporating, e.g.,
any fiber-to-fiber systematics) are negligible. However,
over multiple science exposures spanning several hours,
this is not necessarily the case (see above).
In order to verify the reliability of our velocity zero

point, we also measured the velocity of the radial ve-
locity standard star CD�43�2527 by fitting it with the
HD 122563 template, exactly as we did for the science
spectra. For the two exposures on CD�43�2527 , we find
vhel = 19.6 ± 0.1 km s�1 and vhel = 19.9 ± 0.1 km s�1,
compared to the cataloged velocity of vhel = 19.7 ±

0.9 km s�1 (Udry et al. 1999).

3.2. Metallicity Measurements

We calculated metallicities for 16 Ret II RGB stars
with the CaT calibration of Carrera et al. (2013). As
recommended by Hendricks et al. (2014), we measured
the equivalent widths (EWs) of the CaT lines in the same
way as Carrera et al., fitting each of the three lines with a
Gaussian plus Lorentzian profile. Also following Carrera
et al. (2013), we adopt the line and continuum regions
defined by Cenarro et al. (2001), except for the 8498 Å
line. Cenarro et al. employed a continuum bandpass of
8474 � 8484 Å for this line, but the blue limit of the
GIRAFFE spectra is 8482 Å, so we instead use a region
on the red side of the line from 8513 � 8522 Å. This
wavelength range may be modestly a↵ected by two weak
Fe I lines at 8514 Å and 8515 Å, but at the metallicity
of typical ultra-faint dwarf stars any depression of the
continuum should be negligible over a 9 Å band.
CaT metallicity measurements usually use the horizon-

tal branch (HB) magnitude to correct for the dependence
of the CaT EWs on stellar luminosity. The horizontal
branch magnitude of Ret II, however, is not well deter-
mined because the galaxy contains so few HB stars. We
therefore rely on the calibration of CaT EW as a function

of absolute V magnitude from Carrera et al. (2013). We
convert the DES g and r magnitudes to the SDSS photo-
metric system, and then use the relations for metal-poor
stars from Jordi et al. (2006) to transform to V . We
determine absolute magnitudes assuming a distance of
32± 3 kpc (Bechtol et al. 2015) and a V -band extinction
of AV = 0.05 mag (Schlafly & Finkbeiner 2011).

3.3. Spectroscopic Membership Determination

3.3.1. M2FS

Out of the 185 M2FS fibers placed on stars, we suc-
cessfully measured velocities for 52, including a large ma-
jority of the observed targets brighter than g = 20.6.
The remaining stars had S/N ratios too low for spec-
tral features to be confidently detected in the data. The
velocity measurements and other properties of the stars
are listed in Table 1. The velocity distribution we mea-
sure from the M2FS spectra exhibits a strong peak at
a velocity of ⇠ 60 km s�1 (see Fig. 1), as is character-
istic of a gravitationally bound system. Approximately
half of the stars for which we measure velocities are con-
tained in this peak, with the remainder spread across a
wide range from heliocentric velocities from ⇠ 0 km s�1

to ⇠ 330 km s�1.
For a large majority of the observed stars, the member-

ship status is unambiguous; stars with vhel > 90 km s�1

and vhel < 40 km s�1 are clearly not related to the peak
associated with Ret II, while those very near the mean
velocity of the system and close to the central position
spatially are almost certainly members. However, to en-
sure that the member sample is defined optimally we
carefully examine all stars within 20 km s�1 of the mean
velocity of Ret II, considering their velocities, positions in
the color-magnitude diagram, spatial locations, member-
ship probabilities from Bechtol et al. (2015), and spectral
features. Below we discuss the individual stars whose
membership is not immediately obvious.
Three stars in our sample have velocities of

vhel⇠ 50 km s�1, just to the left of the Ret II peak in
Fig. 1c, and about 15 km s�1 away from the systemic

Walker et al. 2015 [1504.03309]

Simon et al. 2015 [1504.02889]

– 1 –

Table 1. Reticulum II

Quantity Value

Systemic Velocity v = 62.8± 0.5 km s�1

Velocity Dispersion �v = 3.3± 0.7 km s�1

Metallicity [Fe/H] = �2.65± 0.07

Metallicity Dispersion �[Fe/H] = 0.28± 0.09

Dynamical Mass M1/2 = 5.6± 2.4⇥ 105 M�

Mass-to-Light Ratio M/L = 470± 210M�/L�

J-Factor (0.2�) log10 J = 18.8± 0.6GeV2 cm�5

J-Factor (0.5�) log10 J = 18.9± 0.6GeV2 cm�5

Koposov et al. 2015 [1504.07916]
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Figure 4. Left: the half I-band luminosity L1/2 versus half-light mass M1/2 for a broad population of spheroidal galaxies. Middle: the dynamical I-band
half-light mass-to-light ratio ϒI

1/2 versus M1/2 relation. Right: the equivalent ϒI
1/2 versus total I-band luminosity LI = 2 L1/2 relation. The solid line in the

left-hand panel guides the eye with M1/2 = L1/2 in solar units. The solid, coloured points are all derived using our full mass likelihood analysis and their
specific symbols/colours are linked to galaxy types as described in Fig. 2. The I-band luminosities for the MW dSph and GC population were determined by
adopting M92’s V − I = 0.88. All open, black points are taken from the literature as follows. Those with M1/2 > 108 M⊙ are modelled using equation (2)
with σlos and r1/2 culled from the compilation of Zaritsky et al. (2006): triangles for dwarf ellipticals (Geha, Guhathakurta & van der Marel 2003), inverse
triangles for ellipticals (Jørgensen, Franx & Kjaergaard 1996; Matković & Guzmán 2005), plus signs for brightest cluster galaxies (Oegerle & Hoessel 1991)
and asterisks for cluster spheroids, which, following Zaritsky et al. (2006), include the combination of the central brightest cluster galaxy and the extended
intracluster light. Stars indicate globular clusters, with the subset of open, black stars taken from Pryor & Meylan (1993).

more massive counterparts (Bovill & Ricotti 2009; Bullock et al.
2009).

4.2 The global population of dispersion-supported
stellar systems

A second example of how accurate M1/2 determinations may be
used to constrain galaxy formation scenarios is presented in Fig. 4,
where we examine the relationship between the half-light mass M1/2

and the half-light I-band luminosity L1/2 = 0.5LI for the full range
of dispersion-supported stellar systems in the Universe: globular
clusters, dSphs, dwarf ellipticals, ellipticals, brightest cluster galax-
ies and extended cluster spheroids. Each symbol type is matched
to a galaxy type as detailed in the caption. We provide three rep-
resentations of the same information in order to highlight different
aspects of the relationships: M1/2 versus L1/2 (left-hand panel),
the dynamical I-band mass-to-light ratio within the half-light ra-
dius ϒ I

1/2 versus M1/2 (middle panel) and ϒ I
1/2 versus total I-band

luminosity LI (right-hand panel).
Masses for the coloured points are derived using our full mass

likelihood approach and follow the same colour and symbol con-
vention as in Fig. 2. All of the black points that represent galaxies
were modelled using equation (2) with published σlos and r1/2 values
from the literature.13 The middle and right-hand panels are inspired
by (and qualitatively consistent with) figs 9 and 10 from Zaritsky,
Gonzalez & Zabludoff (2006), who presented estimated dynamical
mass-to-light ratios as a function of σlos for spheroidal galaxies that
spanned two orders of magnitude in σlos.

We note that the asterisks in Fig. 4 are cluster spheroids (Zaritsky
et al. 2006), which are defined for any galaxy cluster to be the sum
of the extended low-surface brightness intracluster light component
and the brightest cluster galaxy’s light. These two components are
difficult to disentangle, but the total light tends to be dominated

13 The masses for the open, black stars (globular clusters) were taken directly
from Pryor & Meylan (1993).

by the intracluster piece. One might argue that the total cluster
spheroid is more relevant than the brightest cluster galaxy because
it allows one to compare the dominant stellar spheroids associated
with individual dark matter haloes over a very wide mass range
self-consistently. Had we included analogous diffuse light compo-
nents around less massive galaxies (e.g. stellar haloes around field
ellipticals) the figure would change very little, because halo light is
of minimal importance for the total luminosity in less massive sys-
tems (see Purcell, Bullock & Zentner 2007). One concern is that the
central cluster spheroid mass estimates here suffer from a potential
systematic bias because they rely on the measured velocity disper-
sion of cluster galaxies for σlos rather than the velocity dispersion of
the cluster spheroid itself, which is very hard to measure (Zaritsky
et al. 2006).14 For completeness, we have included brightest cluster
galaxies on this diagram (plus signs) and they tend to smoothly fill
in the region between large Es (inverse triangles) and the cluster
spheroids (asterisks).

There are several noteworthy aspects to Fig. 4, which are each
highlighted in a slightly different fashion in the three panels. First,
as seen most clearly in the middle and right-hand panels, the dy-
namical half-light mass-to-light ratios of spheroidal galaxies in the
Universe demonstrate a minimum at ϒ I

1/2 ≃ 2–4 that spans a re-
markably broad range of masses M1/2 ≃ 109−11 M⊙ and luminosi-
ties LI ≃ 108.5−10.5 L⊙. It is interesting to note the offset in the av-
erage dynamical mass-to-light ratios between globular clusters and
L⋆ ellipticals, which may suggest that even within r1/2, dark matter
may constitute the majority of the mass content of L⋆ Es. Neverthe-
less, it seems that dark matter plays a clearly dominant dynamical
role (ϒ I

1/2 ! 5) within r1/2 in only the most extreme systems (see
similar results by Dabringhausen, Hilker & Kroupa 2008; Forbes
et al. 2008, who study slightly more limited ranges of spheroidal
galaxy luminosities). The dramatic increase in dynamical half-light

14 In addition, concerns exist with the assumption of dynamical equilibrium.
However, Willman et al. (2004) demonstrated with a simulation that using
the intracluster stars as tracers of cluster mass is accurate to ∼10 per cent.

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 406, 1220–1237

Wolf et al. 2010
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Search for Dark Matter
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C
ounts

more than 1° from 3FGL background sources (DES J0255.4
−5406 is located 0. 63n from 3FGL J0253.1−5438).

We applied the search procedure presented in Ackermann
et al. (2015a) to the new DES dSph candidates. Specifically,
we performed a binned maximum-likelihood analysis in 24

logarithmically spaced energy bins and 0. 1n spatial pixels.
Data are additionally partitioned in one of four PSF
event types, which are combined in a joint-likelihood
function when performing the fit to each ROI (Ackermann
et al. 2015a).

Figure 1. LAT counts maps in10 10n q n ROI centered at each DES dSph candidate (white “×” symbols), for E 1 GeV� , smoothed with a 0. 25n Gaussian kernel. All
3FGL sources in the ROI are indicated with white “+” symbols, and those with TS 100� are explicitly labeled.

4

The Astrophysical Journal Letters, 809:L4 (8pp), 2015 August 10 Drlica-Wagner et al.

+

+
23 other dSphs…

Search Fermi-LAT data for gamma-rays 
from dark matter annihilation

ADW et al. ApJ 809 L4 (2015)
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TABLE 1
Summary of dSph Velocity Samples and NFW Parameters

Galaxy Nnew Ntot Ndsph b
Mvir

(107 M,)
Mrmax

(107 M,)
M600

(107 M,)

Carina . . . . . . . . 1833 2567 899 !0.5 20 3.5 2.0
Draco . . . . . . . . 512 738 413 !1 400 9.0 6.9
Fornax . . . . . . . 1924 2085 2008 !0.5 100 18 4.6
Leo I . . . . . . . . . 371 483 416 !0.5 100 7.3 4.5
Leo II . . . . . . . . 128 264 213 0 40 4.3 2.8
Sculptor . . . . . . 1089 1214 1091 !0.5 100 8.2 4.3
Sextans . . . . . . . 947 1032 504 !2 30 5.4 2.5

Fig. 2.—Left: Projected velocity dispersion profiles for seven Milky Way dSph satellites. Overplotted are profiles corresponding to mass-follows-light (King
1962) models (dashed lines; these fall to zero at the nominal “edge” of stellar distribution), and best-fitting NFW profiles that assume b p constant. Short, vertical
lines indicate luminous core radii (IH95). Distance moduli are adopted from Mateo (1998). Right: Solid lines represent density, mass, and profiles correspondingM/L
to best-fitting NFW profiles. Dotted lines in the top and middle panels are baryonic density and mass profiles, respectively, following from the assumption that
the stellar component (assumed to have ) has exponentially falling density with scale length given by IH95.M/L p 1

equal numbers of dSph members. Thus the number of stars,
including interlopers, in each bin may vary, but for all bins,

. We use a Gaussian maximum-likelihoodN 1/2bin ˆS P ∼ (N )ip1 dsph dsphi

method (see Walker et al. 2006a) to estimate the velocity dis-
persion within each bin.
Left-hand panels Figure 2 display the resulting velocity dis-

persion profiles, which generally are flat. The outer profile of
Draco shows no evidence for a rapidly falling dispersion, con-
trary to evidence presented by Wilkinson et al. (2004) but

consistent with the result of Muñoz et al. (2005).6 In fact the
outer profiles of Draco, Carina, and perhaps Sculptor show
gently rising dispersions. While it is likely that at least in Carina
this behavior is associated with the onset of tidal effects (Muñoz
et al. 2006), McConnachie et al. (2007) point out that the
tendency of some dSphs to have systematically smaller velocity
dispersions near their centers is perhaps the result of distinct
and poorly mixed stellar populations (Tolstoy et al. 2004; Bat-
taglia et al. 2006; Ibata et al. 2006). Either explanation com-
plicates a thorough kinematic analysis; in the present, simplified
analysis we assume all stars belong to a single population in
virial equilibrium.
Dashed lines in Figure 2 are velocity dispersion profiles

calculated for single-component King models (King 1962) con-
ventionally used to characterize dSph surface brightness pro-
files. The adopted King models are those fit by Irwin & Hatz-
idimitriou (1995, hereafter IH95) and normalized to match the

6 We have not included the unpublished data of Wilkinson et al. (2004) or
Muñoz et al. (2005) in our calculations of the velocity dispersion profiles of
Draco.

DM Content

Walker et al. (2007)
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more than 1° from 3FGL background sources (DES J0255.4
−5406 is located 0. 63n from 3FGL J0253.1−5438).

We applied the search procedure presented in Ackermann
et al. (2015a) to the new DES dSph candidates. Specifically,
we performed a binned maximum-likelihood analysis in 24

logarithmically spaced energy bins and 0. 1n spatial pixels.
Data are additionally partitioned in one of four PSF
event types, which are combined in a joint-likelihood
function when performing the fit to each ROI (Ackermann
et al. 2015a).
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What we’d like

What we have…
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Table 2
Targets with the largest excesses above background.

(1) (2) (3) (4) (5) (6) (7)
Name Channel Mass (GeV) TS p

local

p
object

p
sample

Indus II ⌧+⌧� 15.8 7.42 0.010 (2.33�) 0.043 (1.72�) 0.843 (-1.01�)
Reticulum II ⌧+⌧� 15.8 7.03 0.011 (2.28�) 0.048 (1.66�) 0.875 (-1.15�)
Tucana III ⌧+⌧� 10.0 6.07 0.019 (2.08�) 0.065 (1.52�) 0.940 (-1.55�)
Tucana IV ⌧+⌧� 25.0 5.09 0.019 (2.07�) 0.090 (1.34�) 0.981 (-2.07�)

Note. — (1) Target name, (2) best-fit DM annihilation channel (3) best-fit DM par-

ticle mass, (4) highest TS value, (5) local p-value calibrated from random blank regions,

(6) object p-value applying a trials factor from testing multiple DM annihilation spectra,

(7) sample p-value applying a trials factor from analyzing 45 targets. The significance as-

sociated with each p-value is given in parentheses. More details can be found in Section 3.

Bonnivard et al. 2015a
Bonnivard et al. 2015b

Walker et al. 2015

Figure 5. The relationship between the distance and spectroscopically determined J-factor of known dSphs is derived with three di↵erent
techniques: (left) non-informative priors (Geringer-Sameth et al. 2015a), (center) Bayesian hierarchical modeling (Martinez 2015), and
(right) allowing for more flexible luminosity and anisotropy profiles (Bonnivard et al. 2015). We also include recently derived J-factor
estimates for Reticulum II (Simon et al. 2015; Bonnivard et al. 2015) and Tucana II (Walker et al. 2015b) along with the set of J-factors of
the most similar calculation method. We fit the J-factor scaling relation (2) to the data in each panel, yielding log

10

(J
0

/ GeV2 cm�5) =
{18.1, 18.3, 18.4}, for the left, center, and right panels, respectively; these resulting relationships are plotted as solid, short dashed, and
long dashed red lines.

however, the J-factors derived by Geringer-Sameth et al.496

(2015b) rely on fewer assumptions about the population497

of dSphs and provide a slightly more conservative esti-498

mate for the predicted J-factors. The predicted J-factor499

for each stellar system is shown in Table 1.500

In addition to predicting the most-probable value of501

the J-factor, we approximate the uncertainty achievable502

with future observations. The uncertainty on the J-factor503

derived from spectroscopic observations depends on sev-504

eral factors, most importantly the number of stars for505

which radial velocities have been measured. For ultra-506

faint dSphs that are similar to the dSph candidates,507

spectra have been measured for 20–100 stars. Addi-508

tional sources of uncertainty include the parameteriza-509

tion of the DM density profile and dynamical factors510

such as the velocity anisotropy of member stars. We511

consider characteristic J-factor uncertainties, log10 �J =512

{0.4, 0.6, 0.8} dex, for the newly discovered ultra-faint513

satellites lacking spectroscopically determined J-factors.514

Note that these uncertainties refer to characteristic mea-515

surement uncertainties on the J-factor for a typical dSph,516

and do not reflect any intrinsic scatter that may exist in517

a larger population of satellites.518

We reiterate that this analysis assumes that the newly519

discovered systems are DM-dominated, similar to the520

known population of ultra-faint dSphs. It is possible521

that some of the more compact systems are actually faint522

outer-halo star clusters. It is also possible that some of523

the larger systems are subject to tidal stripping or have524

kinematics that are di�cult to interpret, in which case525

the prescription laid out above may not apply. On-going526

spectroscopic analyses seek to address these questions.527

5. DARK MATTER CONSTRAINTS528

We use the observed J-factors (when possible) and pre-529

dicted J-factors (otherwise) for each confirmed and can-530

didate dSph to place the �-ray observations into a DM531

context. Figure 6 summarizes the observed flux and h�vi532

upper limits derived for individual confirmed and can-533

didate dSphs, assuming a DM particle with a mass of534

100 GeV annihilating through the bb̄-channel. We find535

that the observed upper limits are consistent with expec-536

tations from blank-sky regions. We also show the median537

Reticulum II



Combined Analysis  
Confirmed and Candidate dSphs

• Spectroscopy is expensive (in both 
person and telescope time) 

• We can predict J-factors assuming 
the new systems are dark-matter-
dominated dSphs: 
1. New systems are dark-matter-

dominated dwarf galaxies 
2. Dwarf galaxies inhabit dark matter 

halos of similar mass (e.g., Strigari 
et al. 2008) 

3. The distance to each target is 
determined from photometry 

• Predict a J-factor uncertainty of  
0.6 dex (Geringer-Sameth et al. 2015), 
to combine the full population. 

• The most significant excess from the 
combined analysis is < 1σ


