

Searching for Dark Matter in Dwarf Galaxies

Alex Drlica-Wagner

on behalf of the Fermi-LAT and DES Collaborations

> ICHEP 2016 August 5th, 2016

Milky Way Satellite Galaxies

(Bullock, Geha, Powell)

Dark Matter Content (J-Factor)

$$\int_{\Delta\Omega(\phi,\theta)} d\Omega' \int_{los} \rho^2(r(l,\phi')) dl(r,\phi')$$

- The dark matter content of dwarf galaxies can be determined from the velocities of their stars
- Measure the Doppler shift of atomic lines in stellar spectra
 - Bright dwarf galaxies: velocities for thousands of stars
 - Faint dwarf galaxies: velocities for fewer than one hundred stars
- A large dispersion of stellar velocities requires a large gravitational binding force

Pass 8 Analysis

Kevork Abazajian @kevaba \cdot Oct 25 @QuantaMagazine @nattyover I corrected the figure for the article to reflect the approx. halo density uncert to 2σ

Kevork Abazajian @kevaba \cdot Oct 25 @QuantaMagazine @nattyover I corrected the figure for the article to reflect the approx. halo density uncert to 2σ

Finding Milky Way Satellite Galaxies

Population of old and metal-poor stars

Fig. 5.—Color-magnitude diagram for M3 stars in the arguments V and B-V

"Redness"

1.2m Telescope Photographic Plates

Discovery Timeline

Finding Milky Way Satellite Galaxies

Koposov et al. (2008) Walsh et al. (2009) Willman et al. (2010)

Color-Brightness
Domain

Segue 1 Marla Geha

2.5m Telescope SDSS CCD Camera

Discovery Timeline

SDSS DR10

Maximum-Likelihood Searches

$$p_i = \frac{\lambda u_i}{\lambda u_i + b_i}$$

$$\lambda = \frac{1}{f} \sum_{i \in \text{Stars}} p_i$$

$$\log L = -\sum_{i \in Stars} \log(1 - p_i) - f\lambda$$

A likelihood analysis to simultaneously combines spatial and spectral information

 $u_i = sig prob$

 $b_i = bkg prob$

 λ = normalization = number of stars

f = observable fraction

This approach naturally yields a membership probability for each star; important for spectroscopy

DES Collaboration

Discovery Timeline

Discovery Timeline

Dwarf Galaxies or Star Clusters?

SDSS DR10 + DES Y2

Blue - Previously discovered satellites

Green - Discovered in 2015 with PanSTARRS/SDSS

Red outline - DES footprint
Red circles - DES Y1 satellites
Red triangles - DES Y2 satellites

DES Satellites

Magellanic Satellites?

With DES sensitivity expect 100+ satellites over the entire sky

30+ of these satellites contributed by the LMC/SMC

Looking Forward

- A large spectroscopic campaign is underway to classify and characterize newly discovered systems
- Future sky coverage:
 - DES Y3+: a few hundred deg², better data reduction, greater sensitivity
 - Additional DECam observations outside of DES (e.g., MagLiteS)
 - LSST: 20,000 deg² (and much greater sensitivity)
- Increased sensitivity: fainter systems with large angular sizes
 - Do galaxies extend to even lower surface brightness?
 - Are there very nearby ultra-faint dwarf galaxies?

Looking Forward

- A large spectroscopic campaign is underway to classify and characterize newly discovered systems
- Future sky coverage:
 - DES Y3+: a few hundred deg², better data reduction, greater sensitivity
 - sensitivity
 Additional DECam observations outside of DES (e.g., MagLiteS) $\frac{10^{-25}}{10^{-25}}$
 - LSST: 20,000 deg² (and much greater sensitivity)
- The LAT continues to survey the entire gamma-ray sky
 - Expect sensitivity to thermal relic DM with a mass up to 400 GeV
 - Dwarfs will provide a sensitive test of DM interpretations of the Galactic Center excess

Charles et al. [1605.02016]

Backup Slides

Reticulum II and the Origin of Heavy Elements

Rapid absorption of free neutrons during explosive event **Possible sites:** core-collapse SNe, neutron star mergers

Observed excess of r-process elements in Ret II relative to other ultra-faint dwarfs (by factor >100) suggests enrichment by a single (rare) event

→ Consistent with neutron star merger hypothesis

Reticulum II and the Origin of Heavy Elements

Using europium as representative r-process element

Neutron-capture abundance patterns for 4 brightest Ret II stars

Gamma-ray Emission Towards Reticulum II

Most significant gamma-ray excess for DES Y1 targets peaks at 2 to 10 GeV and is associated with the nearby object Reticulum II

	LAT Data Set	Local Significance	Post-trials for DM mass and annihilation channel
Fermi-LAT + DES	Pass 8	2.2 σ	1.65 σ
Geringer-Sameth et al.	Pass 7	2.8 σ	2.3 σ
Geringer-Sameth et al.	Pass 8	2.0 σ	1.6 σ
Hooper & Linden	Pass 7	3.2 σ	No trials, use best-fit from Galactic Center

Also, possible blazar PMN J0335-5046 located ~0.1 deg away

LAT & DES Collaborations Drlica-Wagner et al. 2015 arXiv:1503.02632

Geringer-Sameth et al. 2015 arXiv:1503.02320

Hooper & Linden arXiv:1503.06209

Consistency with a DM interpretation depends on the J-factor of Reticulum II relative to other dSphs

Reticulum II: Spectroscopy Campaign

Magellan/M2FS

Gemini/GMOS

VLT/GIRAFFE

Reticulum II: New Dwarf Galaxy

- Velocity peak indicative of a gravitationally bound object
- Dynamical mass calculated from the width of the velocity dispersion (width of the velocity peak)
- Metallicity spread also indicative of deep gravitational potential
- Every measured characteristic of Reticulum II is consistent with the known population of dwarf galaxies

Simon et al. 2015 [1504.02889]	
Walker et al. 2015 [1504.03309]	
Koposov et al. 2015 [1504.07916]	

Value	
$v = 62.8 \pm 0.5 \mathrm{km s^{-1}}$	
$\sigma_v = 3.3 \pm 0.7 \mathrm{km s^{-1}}$	
$[\text{Fe/H}] = -2.65 \pm 0.07$	
$\sigma_{\rm [Fe/H]} = 0.28 \pm 0.09$	
$M_{1/2} = 5.6 \pm 2.4 \times 10^5 \mathrm{M}_{\odot}$	
$M/L = 470 \pm 210 \mathrm{M}_{\odot}/\mathrm{L}_{\odot}$	

Reticulum II: New Dwarf Galaxy

Discovery Timeline

Search for Dark Matter

ADW et al. ApJ 809 L4 (2015)

23 other dSphs...

Search for Gamma Rays

100

Distance (kpc)

10

J-Factor Scaling

Combined Analysis Confirmed and Candidate dSphs

- Spectroscopy is expensive (in both person and telescope time)
- We can predict J-factors assuming the new systems are dark-matterdominated dSphs:
 - 1. New systems are dark-matterdominated dwarf galaxies
 - 2. Dwarf galaxies inhabit dark matter halos of similar mass (e.g., Strigari et al. 2008)
 - 3. The distance to each target is determined from photometry
- Predict a J-factor uncertainty of 0.6 dex (Geringer-Sameth et al. 2015), to combine the full population.
- The most significant excess from the combined analysis is $< 1\sigma$

