Diphoton and Diquark Resonances in U(1) Extension of the MSSM

Qaisar Shafi

Bartol Research Institute Department of Physics and Astronomy University of Delaware

with George Lazarides [Phys.Rev. D93 (2016) no.11, 111702]

ICHEP 2016, Chicago, USA August 2016

New physics beyond the Standard Model suggested by:

- Absence of plausible dark matter candidate;
- Lack of gauge coupling unification;
- Neutrino oscillations;
- Gauge hierarchy problem;
- Charge quantization;

Merging SM with TeV scale SUSY, with unbroken 'matter' parity, has two important implications:

- Stable DM candidate;
- Gauge coupling unification.

To incorporate neutrino oscillations one could introduce right handed neutrinos and provide masses for them in at least two ways:

• With $U(1)_{B-L}$ gauge symmetry present to ensure that right handed neutrinos acquire masses only after this symmetry is spontaneously broken.

Note: SO(10) broken to SU(3)_c×U(1)_{em} using only tensor fields yields an unbroken Z_2 symmetry which is precisely matter parity.

[Kibble, Lazarides, Shafi, Phys.Lett. B113 (1982) 237-239]

• Gauge invariant mass terms, for example motivated by E_6 .

Two Examples will be discussed based on local $U(1)_{B-L}$ and $U(1)_{\psi'}$ symmetries.

- The first case with $U(1)_{B-L}$ requires the introduction of three right handed neutrinos in order to cancel the gauge anomalies.
- Observable diphoton and diquark resonances arise by introducing additional vector-like fields in the TeV mass range.
- The second example with U(1)_{ψ'} is motivated by E₆ grand unification and its decomposition
 E₆ → SO(10) × U(1)_ψ → SU(5) × U(1)_χ × U(1)_ψ.

In this case vector-like fields are present in order to ensure an anomaly free theory and their masses are controlled by the symmetry breaking scale of $U(1)_{\psi'}$ (a linear combination of $U(1)_{\psi}$ and $U(1)_{\chi}$).

• Mechanisms exist for resolving the MSSM μ problem in both cases.

Recall the MSSM superpotential which respects Z_2 matter parity:

$$W = y_u H_u q u^c + y_d H_d q d^c + y_e H_d l e^c + \mu H_u H_d$$

5/22

Ignoring non-perturbative effects, W respects three global symmetries, namely $U(1)_B$, $U(1)_L$ and $U(1)_R$.

The R charges are as follows:

 $H_u, H_d \rightarrow 1$ $q, u^c, d^c, l, e^c \rightarrow \frac{1}{2}$ $W \rightarrow 2$ Motivated by the MSSM example we require that the relevant W is determined by the gauge symmetry, global B and L conservation, and a U(1) R symmetry. However, in contrast to the MSSM case with radiative electroweak breaking, we require tree level breaking at scale M of $U(1)_{B-L}$, with supersymmetry remaining unbroken.

$$W = y_u H_u q u^c + y_d H_d q d^c + y_\nu H_u l \nu^c + y_e H_d l e^c + \kappa S (\Phi \bar{\Phi} - M^2) + \lambda_\mu S H_u H_d + \lambda_{\nu^c} \bar{\Phi} \nu^c \nu^c$$

The Z_2 subgroups of $U(1)_R$, $U(1)_{B-L}$ coincide with matter parity.

Superfields	Representations	Global Symmetries		
	under G_{SM}	B	L	R
	Matter Sup	perfields		
\overline{q}	(3, 2, 1/6)	1/3	0	1
u^c	$({f \bar 3},{f 1},-2/3)$	-1/3	0	1
d^c	$(\bar{\bf 3},{f 1},1/3)$	-1/3	0	1
l	(1, 2, -1/2)	0	1	1
ν^c	(1, 1, 0)	0	-1	1
e^c	(1, 1, 1)	0	-1	1
	Higgs Sup	erfields		
H_u	(1, 2, 1/2)	0	0	0
H_d	$({f 1},{f 2},-1/2)$	0	0	0
S	(1, 1, 0)	0	0	2
Φ	(1, 1, 0)	0	-2	0
$\overline{\Phi}$	(1, 1, 0)	0	2	0

- W is the most general renormalizable superpotential which obeys the symmetries of the model.
- Without B and L symmetries and keeping only $U(1)_{B-L}$, the terms $\bar{D}ql$, $Du^c e^c$, and $\bar{D}d^c\nu^c$ would be present.
- \implies Rapid proton decay.
 - The 'bare' MSSM μ term is replaced by SH_uH_d . After SUSY breaking S acquires a non-zero VEV which induces the μ -term.

G. R. Dvali, G. Lazarides, and Q. Shafi, Phys. Lett. B 424 , 259 (1998); S. F. King and Q. Shafi, Phys. Lett. B 422 , 135 (1998)

Consider the potential

 $V = \kappa^2 |\Phi \bar{\Phi} - M^2| + \kappa^2 |S|^2 (|\Phi|^2 + |\bar{\Phi}|^2) + D - \text{terms.}$

- Where M, κ are made real and positive by field rephasing.
- Vanishing of the D-terms yields $|\Phi| = |\bar{\Phi}| \Longrightarrow \bar{\Phi}^* = e^{i\varphi}\Phi$.
- The F-terms vanish for $S=0, \ \Phi \bar{\Phi} = M^2$, requiring $\varphi = 0$.
- Rotating Φ , $\overline{\Phi}$ to the positive real axis by a B-L transformation, we find the SUSY vacuum

$$S = 0$$
 and $\Phi = \overline{\Phi} = M$.

9/22

- The mass spectrum of the scalar S − Φ − Φ
 system is constructed by writing Φ = M + δΦ and Φ
 = M + δΦ.
- For unbroken SUSY, we find two complex scalar fields Sand $\theta = (\delta \Phi + \delta \overline{\Phi})/\sqrt{2}$ with equal masses $m_S = m_{\theta} = \sqrt{2}\kappa M$. (Note: $m_{Z'} \approx \sqrt{6}g_{B-L}$ M)
- Soft SUSY breaking can, of course, mix these fields and generate a mass splitting.
- For example, the trilinear soft term $A\kappa S\Phi\bar{\Phi}$ yields a mass² splitting $\pm\sqrt{2}\kappa MA$ with mass eigenstates $(S + \theta^*)/\sqrt{2}$, $(S \theta^*)/\sqrt{2}$.

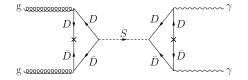
イロト イヨト イヨト イヨト ヨー の

Consider the soft SUSY breaking potential terms

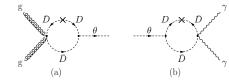
$$V_1 = A\kappa S\Phi\bar{\Phi} - (A - 2m_{3/2})\kappa M^2 S, \quad A \sim m_{3/2}$$

arising from the W term $\kappa S(\Phi \overline{\Phi} - M^2)$.

- In minimal SURGA, the coefficients of the trilinear and linear soft terms are related as shown.
- Substituting $\Phi = \overline{\Phi} = M$, we obtain a linear term in S which, together with the mass term $2\kappa^2 M^2 |S|^2$, generates a VEV:

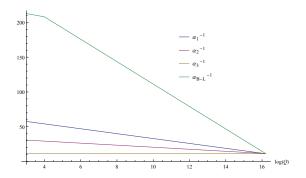

$$\langle S \rangle = -\frac{m_{3/2}}{\kappa}.$$

• From $\lambda_{\mu}SH_{u}H_{d}$, we obtain the μ term with $\mu = -\lambda_{\mu}m_{3/2}/\kappa$.

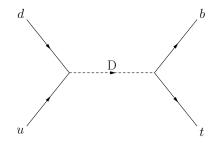

- How can we test this?
- Recall that unification of gauge couplings remains intact if we include, say, $5{+}\bar{5}$ fields;
- Up to 4 such pairs can be introduced without spoiling perturbative unification.
- In our case these fields (D, \overline{D} and L, \overline{L}) acquire masses from their couplings to S;
- This explains why vector-like masses in this model are comparable to the TeV SUSY breaking scale.
- With this formulation the S- Φ - $\overline{\Phi}$ system, together with D- \overline{D} fields, can be observed as diphoton (and diquark) resonances at LHC.

Superfields	Representations	Global Symmetries		s			
	under G_{SM}	B	L	R			
Matter Superfields							
q	(3, 2, 1/6)	1/3	0	1			
u^c	$({f \bar 3},{f 1},-2/3)$	-1/3	0	1			
d^c	$({f \bar 3},{f 1},1/3)$	-1/3	0	1			
l	(1, 2, -1/2)	0	1	1			
ν^c	(1, 1, 0)	0	-1	1			
e^c	(1, 1, 1)	0	-1	1			
Higgs Superfields							
H_u	(1, 2, 1/2)	0	0	0			
H_d	$({f 1},{f 2},-1/2)$	0	0	0			
S	(1,1,0)	0	0	2			
Φ	$({f 1},{f 1},0)$	0	-2	0			
$\bar{\Phi}$	(1, 1, 0)	0	2	0			
Vector-like Diquark Superfields							
D	(3, 1, -1/3)	-2/3	0	0			
\bar{D}	$({f \bar 3},{f 1},1/3)$	2/3	0	0			

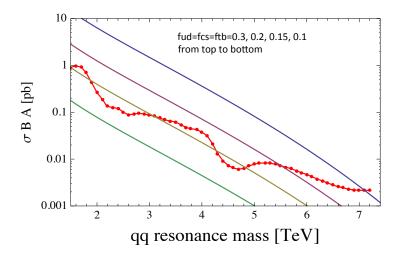
(ロ) (部) (主) (主) (三) のへの



・ロト・白 ト・ヨ ト・ヨー うへの


•
$$m_{Z'} = \sqrt{6}g_{B-L}M > 3 \text{ TeV} \implies g_{B-L}M \gtrsim 1225 \text{ GeV}.$$

- Setting $m_{3/2} = 50 \text{ GeV}$, we obtain $\kappa \simeq 0.066$, $M \simeq 8040 \text{ GeV}$, $\lambda_{\nu^c} \gtrsim 0.047$, and $g_{B-L} \gtrsim 0.15$.
- A gravitino in this mass range is a plausible cold matter candidate.

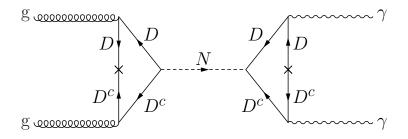


・ロ・・ (日・・ (日・・ (日・・)) くの

Diquark Resonance

CMS constraints on Color Triplet Diquark production at LHC Run 2

ψ' MSSM


- Motivated by $E_6 \supset SO(10) \times U(1)_{\psi} \supset SU(5) \times U(1)_{\chi} \times U(1)_{\psi}.$
- Matter fields: $27 \rightarrow 16_1 + 10_{-2} + 1_4$
- Vectorlike color triplets (diquarks) can remain light if $U(1)_{\psi}$ breaking scale is in the TeV range.
- This may also resolve the MSSM μ problem.
- One example is provided by using U(1)_{ψ'}, a linear combination of the χ and ψ generators, such that the right-handed neutrino is neutral under U(1)_{ψ'}.

E. Ma, Phys. Lett. B 380 , 286 (1996); P. Langacker and J. Wang, Phys.Rev. D58 115010 (1998); C. Callaghan, S. F. King and G. K. Leontaris, JHEP 1312 , 037 (2013); J. L. Rosner, Mod. Phys. Lett. A, 30, 1530013 (2015),...

Superfields	Representations	Charge	es			
	under G_{SM}	R	$2\sqrt{10}Q_{\psi'}$			
Matter Superfields						
q	(3, 2, 1/6)	1/2	1			
u^c	$(\bar{3}, 1, -2/3)$	1/2	1			
d^c	$(\bar{3}, 1, 1/3)$	1/2	2			
l	(1, 2, -1/2)	1/2	2			
ν^{c}	(1, 1, 0)	1	0			
e^{c}	(1, 1, 1)	1/2	1			
$H_{u}^{2,3}$	(1, 2, 1/2)	1	$^{-2}$			
$H_{d}^{2,3}$	(1, 2, -1/2)	1	$^{-3}$			
$\tilde{D_i}$	(3, 1, -1/3)	1	-2			
D_i^c	$(\bar{3}, 1, 1/3)$	1	-3			
N_i	(1, 1, 0)	1	5			
	Higgs Superfie	lds				
H^1_u	(1, 2, 1/2)	1	-2			
$\begin{array}{c} H^1_u \\ H^1_d \end{array}$	(1, 2, -1/2)	1	-3			
\bar{S}	(1, 1, 0)	2	0			
N	(1, 1, 0)	0	5			
\bar{N}	(1, 1, 0)	0	-5			

$$W = \kappa S(N\bar{N} - M^2) + \lambda_D D_i D_i^c N + \lambda_N H_u^1 H_d^1 N + \dots$$

Minimal model yields diphoton resonances beyond the reach of LHC (but 100 TeV collider may find it.)

イロン イロン イヨン イヨン 三日

- Realistic U(1) extensions of the MSSM predict resonances observable at the LHC and/or future colliders.
- Symmetries prevent the μ parameter and the masses of vector-like fields and a gauge singlet field from being arbitrarily large.
- In $U(1)_{B-L}$ model, four spin zero resonances arise from a gauge singlet scalar and a pair of conjugate Higgs superfields responsible for B-L breaking.
- $U(1)_{\psi'}$ model (ψ' MSSM) predicts vector-like fields which may be accessible at the LHC.
- In minimal model the diphoton resonance production cross section is suppressed. (due to constraint from Z' boson)