

OUTLINE The ATLAS Muon New Small Wheel Upgrade in a nutshell Detector Technologies and NSW Layout Micromegas ATLAS Micromegas Design and Challenges Construction of the Modules-0 prototypes SM1 Module-0 Test-beam PRELIMINARY Results Summary Mauro Iodice - ICHEP 2016 - Chicago, USA - 5 August, 2016

New Small Wheel Upgrade in a nutshell

- Main ATLAS upgrade during the Long Shutdown 2 (2019/20) (Phase-1)
- Will replace the present Small Wheel, not designed to exceed 10³⁴ cm⁻²s⁻¹
- Will operate up to HL-LHC luminosity (Phase-2)
- Expected rates up to 15 kHz/cm2
- GOALs:
 - Maintain momentum resolution: 15% P_⊤ resolution at 1 TeV
 - → ~100 μm resolution per plane on a multilayer station
 - keep single muon trigger under control
 - → 1 mrad online angular resolution

New Small Wheel Detector Technologies

Combination of sTGC and MicroMegas detector planes

Small Strips TGC (sTGC) primary trigger detector

- Bunch iD with good timing resolution
- Online track vector with <1 mrad angle resolution
- pads: region of interest
- strips: track info (strip pitch 3.2 mm)
- wire groups: coarse azimuthal coordinate

Resistive strips MicroMegas (MM)

primary precision tracker

- Good Spatial resolution < 100 μm
- Good track separation (0.4 mm readout granularity)
- Resistive anode strips → suppress discharge influence on efficiency
- · Provide also online segments for trigger

Talk by Rimsky Rojas - Aug. 6th

Common front-end ASIC: VMM second prototype under tests

New Small Wheel Layout

Each NSW has 16 sectors 8 Large + 8 Small

Each Sector is a sandwich of sTGC and MM quadruplets

- Construction of MM Quads is distributed over several countries.
- Challenge in construction: alignment of the strips on each detection layer
 - o 30 μm RMS in η
 - o 80 μm RMS in z

- Each MM module has 4 detection planes
- 2 planes with parallel strips (precision coordinate)
- 2 planes with +/-1.5° Stereo strips (2nd coordinate)

Micromegas Construction: Resistive strips Anode Boards

- Resistive strips on kapton by screen-printing
- "Ladder pattern" (connections every 10 mm):
 - Homogeneous resistivity (independent from distance)
 - Insensitivity to broken lines

Typical resistivity:

~ 10-20 M Ω /cm (~800 k Ω / \square)

- Board dimensions:
 from 45x30 up to 45x220 cm²
- 1022 strips/boards
- Readout strips pitch:
 425 or 450 um
- Pillars height: 128 μm
- Several types of alignment masks

SM1 Module-0 Readout Panels Construction

INFN Pavia
Double Side Readout panel built with 5+5 Readout boards – strips alignment < 40 μm

SM1 Module-0 Drift Panels Construction

INFN Roma3

Similar construction Concept as for the readout panels

- Same planarity requirements as RO panels
- Mesh tension ~ 10 N/cm uniformity 10%

SM1 Module-0 Quadruplet assembly

SM1 Module-0 Test-beam and PRELIMINARY Results

- 180 GeV/c pion beam
- Scintillators trigger
- Beam spot+trigger ~ 1x1 cm²
- 5 micromegas with x-y readout (Tmm) used as reference
- SM1 Module-0 on a x-y scanning table
- Ar:CO₂ gas mixture (93:7)
- APV25+SRS readout (from RD51) [NOT FINAL NSW electronics]

SM1 quadruplet:

- 425 µm strip pitch
- L1 & L2 vertical strips (eta),
- L3 & L4 ±1.5° w.r.t. vertical axis (stereo)

Module-0 PRELIMINARY Results on Spatial Resolution

- Perpendicular incident beam on PCB5
 = longest strips
- Nominal High voltage settings:
 HV_ampl = 570 V (E= 4.4x10⁷ V/cm)
 HV_drift = 300 V (E=600 V/cm)
- Ar/CO₂ 93/7 @ 20 l/hour

Module-0 PRELIMINAY Results on Efficiencies

- Cluster efficiency: presence of a cluster for any reference track
- Track-based efficiency: one cluster within given distance from the reference track impact on SM1

Cluster efficiency Vs Amplification HV for Layer1

 Turn-on curve saturate at a cluster efficiency very close to 100%

Efficiency at 570 V vs x-pos in the beam-spot For Layer1

- Track based efficiency (+/-1.5 mm) ~98%
- 2% inefficiency mostly due to delta-rays

Module-0 PRELIMINARY Results on Strip Alignment

Measurements of layer-to-layer alignment

- Measurements at different vertical positions (along the strips)
- For each y-position measure Δx between layer_i and layer-1 using reference tracks

Relative alignment wrt layer_1:

- All layers aligned within a maximum deviation of +/- 80 μm
- Indication of layer-to-layer rotation or strip pattern global deformation under investigation at the construction site

Summary

- The ATLAS NSW Upgrade will enable the Muon Spectrometer to retain its excellent performance also beyond design luminosity and for the HL-LHC phase
- Large size resistive Micromegas will be employed for the first time in HEP experiments
- Micromegas design & construction methods have been refined & tested to meet the ATLAS requirements:
 - Tooling Design and quality control procedures
 - Construction and assembly methods
 - Planarity of the panels
 - Alignment of Strips and panels
- All module-0 construction are near completion
- SM1 Module-0 Completed and tested with very satisfactory results
- Ready for transition to series production in January 2017

BACKUP slides

NEW SMALL WHEEL - MOTIVATIONS: TRIGGER

Consequences of luminosity rising beyond design values for forward muon wheels

- Present Muon L1 trigger in the EndCap relies on the Big Wheel station only: Calculating a track angle/vector and extrapolating to IP
- The Level1 Trigger rate in the EC is dominated by fake triggers
- At a 3 x 10³⁴ cm⁻²s⁻¹ L1MU20 (p_T>20 GeV) rate is estimated ~60 kHz, exceeding the available bandwidth (~15kHz for muons)

Present Level1 muon trigger

Cannot distinguish cases A (real high-pt track), B (low-pt particle created in the toroid area) and C (multiple scattering)

Upgrade L1 with NSW

Replace the Muon Small Wheels with the New Small Wheels

- Can filter out fake tracks by being able to reconstruct track vector/direction also in the endcap inner (EI) station
- \rightarrow Extend L1 trig coverage to $\eta = 2.6$ with angular resolution of 1 mrad

NEW SMALL WHEEL - MOTIVATIONS: TRACKING

Cavern Background

- Measured hit rates in the Endcap Inner (Small Wheel) and extrapolated to 3x10³⁴ cm⁻² s⁻¹
- At 5x10³⁴ cm⁻² s⁻¹ (luminosity of HL-LHC) the maximum expected rate in the NSW is about 15 kHz/cm² (>5 MHz/MDT_tube) (incl. Safety factor of 1.5)

Measured hit rates @ 1033 cm-2 s-1

Expected rates @ 3x10³⁴ cm⁻² s⁻¹

Efficiencies and resolutions

- Above 300 kHz/tube the MDT efficiency drops significantly due to dead time from background hits
- Limit for CSCs is reached even earlier, due to only 4 detection layers (instead of 6 for MDT)
- MDT Resolution degradation due to gain loss caused by space charge

Performance of Resistive Micromegas

- A long R&D phase on small/Medium size Micromegas prototypes has demonstrated that resistive Micromegas fulfill the requirements for operations in ATLAS during next LHC upgrades
- Quick review on the main performance (obtained with NOT NSW elx):
 - Spatial Resolution below 100 μm independent from track angle

ATLAS Micromegas Design

A Large Sector of Micromegas

Main components of one Quadruplet

- 1 "eta-strips" double readout panel
- 1 "stereo-strips" double readout panel → Alignment is crucial
- 1 double drift cathode panels
- 2 single drift cathode panels

To achieve 15% transverse momentum resolution for 1 TeV muons :

 Alignment of the strips on each plane (RMS):

track accuracy: $30 \, \mu \text{m} \, \text{in} \, \eta$ $80 \, \mu \text{m} \, \text{in} \, z$

Requirements on the construction:

Precision coordinate η

- Position of strips on planes: 40 μm (max dev.)
- Relative alignment of the two sides of the readout panel: 60 μm (max dev.)
- Relative alignment of the two readout panels:
 60 μm (max dev.)

Z-coordinate

- Planarity for ALL panels:
 - $< 37 \mu m RMS$
 - < 110 µm max deviation wrt nominal

Micromegas Construction: Readout PCBs

photolithographic creation of copper pattern standard process. complex due to: size of board & required precision.

- II. cutting of Kapton foil with resistive pattern non-standard but simple & required accuracy only ±1mm
- III. stacking and high-pressure & temperature gluing of Kapton foil, glue foil and board standard process for small boards. complex due to: size of board & required cleanliness.
- IV. chemical plating of copper pads standard process
- V. screen-printing of silver paste non-standard but rather simple & required accuracy only ± 1mm
- VI. lamination of coverlay & pillar creation standard process for small boards. complex due to: size of boards, highly non-standard pattern, required flatness
- VII.cutting of boards and drilling of non-precision holes standard process on CNC machine.

complex due to size of boards and required cutting precision

Readout Panels - Construction steps 1/2

Positioning precision 10-15 µm

- Align 5 Readout PCB on precision plates on the granite table with precision pins in precision hole & slot
- 2. Apply vacuum, remove pins, and apply glue
- 3. Place aluminum bars and honeycomb into the glue (align with Teflon pins in assembly holes)

Readout Panels - Construction steps 1/2

Positioning precision 10-15 µm

Board positioning (strip alignment in one side)

- Precision hole in readout board (target)
- · Precision washer aligned using rasmasks
- Circle and slot

What you see with the Rasni camera

Alternative systems are used for Readout board positioning e.g. with optical method in Saclay

Readout Panels - Construction steps 2/2

- 4. Align second layer PCBs with precision pins on precision aluminum plates on the stiffback Apply vacuum, remove pins and apply glue
- 5. Turn stiffback, lower towards the first side
- Alignment of the PCB layers achieved by precision tapered and v-shaped interlocks

Quadruplet Assembly Steps

Mauro Iodice – ICHEP 2016 – Chicago, USA – 5 August, 2016

precision alignment pins

Modules-0 Status at other Construction Sites

SM2 - Germany - BMBF

- All drift Panels are built mesh stretching as well
- All Readout panels are built
- Completion module-0 in Autumn

LM1 – France - Saclay

- 2 Drift panels built
- Production tooling and new clean room ready (~20July – NEW!)
- Completion of module-0 in Autumn

LM2 - CERN - Dubna-Thessaloniki

- All drift and readout panels built
- Quadruplet assembly ongoing (next step doublet assembly in Aug.)
- Completion module-0: in Autumn

Panels Planarity Measurements Results

Drawn at: 2016-05-09 10:27:34

Optical measurements with coordinate measurement system @ Munich

- Laser distance sensor on a CMM
- Granite table tolerance 6 μm
- Accuracy 8 μm

IVIAUTO TOUTCE - ICHEP ZUIO - CHICAGO, USA - 5 AUGUST, ZUIO

Panel measurements at CERN with laser tracker in vertical position

No local inhomogeneity above 30 μm

X-Axis [mm]

Global deformations visible because of vertical hanging of the panels during measurements Global deformations expected to vanish after assembly

Residual [µm]

