

## **Precision Measurements with Tritium End Point Experiments**

Reporting on behalf of Project 8 and PTOLEMY

Chris Tully (PTOLEMY) Princeton

ICHEP 2016 Chicago, IL, USA August 6, 2016





Sensitivity Frontier

 Next step in lab-based neutrino mass measurements will cross into new territory -0.2eV KATRIN → 0.02eV New Approaches

In this era, neutrino mass will move from being an unknown to become a tool to separate out signals





### Precision Cosmology Projections



Dark Energy Spectroscopic Instrument (DESI) Baryon Acoustic Oscillations

#### $^{3}H \rightarrow ^{3}He^{+} + e^{-} + \overline{\nu}_{e}$



Sum of masses and kinetic energy must add up to mass of initial nucleus

#### **Electron Endpoint Spectrum**

$$\frac{dN}{dE} \sim \sqrt{\left(E - E_0\right)^2 - \sum_{i}^{n_v} \left|U_{ei}\right|^2 m_{v,i}^2}$$



# KArlsruhe TRItium Neutrino (KATRIN)





- Cyclotron Radiation Emission Spectroscopy B. Monreal and J. Formaggio, Phys. Rev. D80:051301
   Relativistic correction to cyclotron frequency
   Low density cold T<sup>2</sup> gas → Atomic traps
- Microcalorimetry S. Betts *et al.*, arXiv:1307.4738 (astro-ph)
  - Transition-Edge-Sensor Electron Calorimetry

New Approaches

- RF tracking/triggering
- Cryogenic Tritiated
   Graphene/Au Surfaces



P rinceton T ritium O bservatory for L ight, E arly-universe, M assive-neutrino Y ield

PTOLEMY Supported by: The Simons Foundation The John Templeton Foundation



## Cyclotron Radiation

Larmor formula

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} (\gamma^2 - 1) \sin^2 \theta$$

Emitted power

- 1.1 fW for 18 keV e<sup>-</sup> at 90°
- 1.7 fW for 30.4 keV e<sup>-</sup> at 90°



→ Low-noise cryogenic RF-system needed!





#### magnetic field of $1T \rightarrow cyclotron frequency in K-Band$

Frequency



<sup>83m</sup>Kr provides electrons close to tritium endpoint

University of Washington W PROJECT8 PROTOTYPE PROJECT Receiver Signal Gas System **Krypton Source** Magnet Waveguide Cell (inside)



PROJECT 8



#### Cell upper window

— Gas Lines

Magnetic Bottle Coil

Cell lower window

Test signal injection port

#### Harmonic e<sup>-</sup> trap







#### Harmonic e⁻ trap



Waveguide to amplifiers



Data Taking on 06/06/2014 immediately shows trapped electrons



First detection of single-electron cyclotron radiation!



#### Electron tracks in spectrogram are information-dense





## Mass Reach

P T



Sensitivity limited by gas density!

PROJECT 8

## Mass Reach

PROJECT 8



Inverted hierarchy limit in reach with atomic tritium!



#### Neutrino Mass as a Tool for Discovery



Relic Neutrino Signal/Noise: JCAP 0706 (2007)015, hep-ph/0703075 by Cocco, Mangano, Messina



## vercoming T<sup>2</sup> Molecular Broadening



Molecular excitations in daughter molecule

- blur tritium endpoint
- → fundamental limit to measurement of ν-mass

Need atomic tritium for ultimate experiment!

#### **Tritiated-Graphene**

- <3eV Binding Energy
- Single-sided (loaded on substrate)
- Planar (uniform bond length)
- Semiconductor (Voltage Reference)
- Polarized tritium(? directionality?)



~3x10<sup>13</sup> T/mm<sup>2</sup> (~80kHz of decays/mm<sup>2</sup>) First Samples Produced by SRNL

Cryogenic Au(111) also under investigation with Free Radical or Cold Plasma Loading



## SRNL



Microcalorimetry

- Electron calorimetry with an energy resolution sufficient to resolve the neutrino mass
  - Current TES calorimeter work (by ANL Clarence Chang, by Goddard GSFC – Harvey Moseley, Jack Sadlier, by StarCryo) is on its way to reach 0.15eV @ 100eV (~70-100mK)
  - New focus on ~10eV energy scale may get down to 0.05eV (~50mK)



10eV electron can be stopped with very small C x10<sup>-4</sup> smaller than for X-ray

 τ (time response) also small

 Bandwidths of ~1 MHz to record

 ~10kHz of electrons hitting the
 individual sensors

 $\sim 100$  mK cold bath (refrigerator)

#### R&D Prototype @ PPPL (August 2, 2016)

1000

Supported by: The Simons Foundation The John Templeton Foundation

Robot Arm for Tritiated-Graphene Samples

3.2 T

18.4 kV

1004/01

907

5

#### R&D Prototype @ PPPL (August 2, 2016)

1984

10<sup>-29 V</sup> 10<sup>-3</sup>

MAC-E Filter

99.5

2 T

12.4 kV

Supported by: The Simons Foundation The John Templeton Foundation

StarCryo Microcalorimeter

Dilution Refrigerator Kelvinox MX400



## Relic Neutrino Capture Rates

- Target mass: **100 grams of tritium** (2 x 10<sup>25</sup> nuclei)
- Capture cross section \* (v/c) ~  $10^{-44}$  cm<sup>2</sup> (flat up to 10 keV)
- (Very Rough) Estimate of Relic Neutrino Capture Rate:
- (56 v<sub>e</sub>/cm<sup>3</sup>) (2 x 10<sup>25</sup> nuclei) (10<sup>-44</sup> cm<sup>2</sup>) (3 x 10<sup>10</sup> cm/s) (3 x10<sup>7</sup>s)

Lazauskas, Vogel, Volpe: J.Phys.G G35 (2008) 025001 Cocco, Mangano, Messina: JCAP 0706 (2007) 015 (5 events/yr for Dirac neutrinos) Long, Lunardini, Sabancilar: JCAP 1408 (2014) 038

#### σ\*v/c=(7.84±0.03)x10<sup>-45</sup>cm<sup>2</sup>

#### Known to better than 0.5%

Gravitational clumping could potentially increase the local number of relic neutrinos. For low masses ~0.15eV, the local enhancement is ~<10%

Ringwald and Wong (2004) Villaescusa-Navarro et al (2011



~ 10 events/yr



## Three Major Challenges

- Reduce molecular smearing

   New source (Tritiated-Graphene or Cryogenic Au(111))
- Measure the energy spectrum directly with a resolution comparable to the neutrino mass
   High-resolution electron microcalorimeter
- Compress a 70m spectrometer length KATRIN's length – down to ~cm scale and replicate it ~x10<sup>4</sup>-10<sup>6</sup> at lower precision – final measurement from microcalorimeter
  - New ExB filter concept
  - RF trigger system (Project 9?)







Example antenna configuration and vertex resolution being modeled

- Larger bore ~1T magnet  $\rightarrow$  exists
- Phased array antenna configurations
   → under study



## Cyclotron Radiation Emission Spectroscopy



- Great new reality for high precision spectroscopy
- New Data! Tritium to be injected soon.
- Large Volume, Phased-Array Concept in development

Summary

- Microcalorimetry
  - Potential for sub-eV resolution
    - First data soon!



P rinceton
T ritium
O bservatory for
L ight,
E arly-universe,
M assive-neutrino
Y ield

- Materials research on tritium substrates
- New compact filter with RF trigger under design

PTOLEMY Supported by: The Simons Foundation 27 The John Templeton Foundation



# Backup (Project 8)

Ρ

E M

## RECEIVER STAGE



- Double-stage down-mixing
- Digitizer: 8-bit, 500Ms/s, 125MHz bandwidth





Project 8 Phase II Cel

#### Improved insert installed

- first <sup>83m</sup>Kr data available → very promising
- T<sub>2</sub> system ready to be installed



#### Bathtub Trap Data

P T

0





Alexi Radovinsky, MIT Magnet Lab

Studying loffe-Pritchard trap • couple to nuclear magnetic moment  $\Delta E = -\vec{\mu} \cdot \vec{B}$ 

 similar to BEC and antihydrogen traps (ALPHA)

Challenges

- cool atomic tritium to sub-Kelvin
- need high T/T<sub>2</sub> purity



# Backup (PTOLENY)

Ρ

E M De

## Rethinking Relic Neutrino Detection

PTOLEMY Collaboration, S. Betts *et al.*, arXiv:1307.4738 (astro-ph)



P rinceton
T ritium
O bservatory for
L ight,
E arly-universe,
M assive-neutrino
Y ield

- Relic Neutrinos ightarrow Highest intensity DC neutrino flux in the Universe
- Massive neutrinos
   → High resolution electron microcalorimetry at 10eV
   →~0.05eV sensitivity(?)



RF triggering on single e<sup>-</sup>
 →Large-scale tritium target and filtering of endpoint electrons







TritiumOriginal idea: Steven Weinberg in 1962 [Phys. Rev. 128:3, 1457]JCAP 0706 (2007)015, hep-ph/0703075, Cocco, Mangano, Messina

• Tritiated-Graphene target



• ExB filter ~x10<sup>-4</sup> length of KATRIN for microcalorimeter

PTOLEMY Supported by: The Simons Foundation The John Templeton Foundation



# Hydrogenation Project

- Hydrogenation via Plasma
  - Cold Plasma in PPPL : The mixture of H atoms and ions treats samples under room temperature. The ratios of ions could be adjusted by plasma power.
  - Hydrogen atom Plasma in Chemical Engineering Dept (Princeton Univ): Ions are removed by the filter.

Cold plasma and hydrogen atom plasma reduces the damage in thin film surfaces from high energy plasma and provide a long duration treatment to increase hydrogen coverage.

- Surface Characterization for hydrogen doping
  - Raman Spectroscopy
  - High resolution X-ray Spectroscopy (XPS)
  - Photoluminescence (PL)
  - Low T Scanning Tunneling Microscopy (STM)
  - Scanning Transmission Electron Microscope (STEM)

#### **DFT** Calculation via Vasp





## Hydrogenation on Graphene

After hydrogenation, graphene sp<sup>2</sup> structures are twisted to sp<sup>3</sup> hybrid structures. It could be detected by Raman, XPS and low T STM.





#### Low Temperature ST

#### STM images showing ordered configurations of H atoms



#### DFT Calculation for H binding energies

#### Table 1. H Binding Energies Per H Atom for Several Structures<sup>a</sup>

| structure                                               | monomer            | d-ortho    | d-para        | d-meta   | s-ortho     | s-para     | s-meta           | s-A         | d-A            | d-B       | d-C         |
|---------------------------------------------------------|--------------------|------------|---------------|----------|-------------|------------|------------------|-------------|----------------|-----------|-------------|
| $E_{\rm b}~({\rm eV})$                                  | 0.83               | 1.66       | 1.27          | 0.76     | 1.38        | 1.35       | 0.76             | 0.76        | 1.82           | 2.22      | 2.45        |
| <sup>a</sup> "s" denotes                                | single-sided and " | d" denotes | double-sided. | "ortho", | "para", and | "meta" den | ote the differen | nt dimer co | onfigurations. | A, B, and | C stand for |
| the ordered structures observed in our STM experiments. |                    |            |               |          |             |            |                  |             |                |           |             |

Ref: Lin, C. et al. Nano Lett. 15, 903-908 (2015).



From the research of hydrogen evolution reaction, metals and Transition metal dichalcogenides (TMDs) show weak H binding energies and high hydrogen absorption.

Other Substrates

- TMDs monolayers: MoS<sub>2</sub> and NbS<sub>2</sub>(CVD growth)
- Single crystal metals: Cu (111) and Au (111)





Exchange current density against hydrogen binding energy

Ref: 1. Voiry, D., Yang, J. & Chhowalla, M. Adv. Mater. (2016).



### Graphene Transfer

Graphene transfer (standard simple transfer process): PMMA works as a supporting layer for transparent graphene. After transferring to substrates, PMMA is dissolved by acetone, IPA and DI water.



39

# prover of nmercial Monolayer Graphene

- High quality 1 cm<sup>2</sup> samples readily available (free samples)
  - Common substrates for transport: Copper, Si/SiO<sub>2</sub>
- Single crystals are less common (discussed later)



