Production of exotic hadrons and charmonium at e+e- B-factories

> Studies in the Y(5S) -Y(6S) region At Y(5S)

➤ Charmonia in Y(1S)

Kay Kinoshita
University of Cincinnati

e+e- B-factories

- KEKB/Belle
 - 1999-2010 8.5 GeV e⁻ + 3.5 GeV e⁺
 - 772M Y(4S) events(B pair), ~37M b-pair@Y(5S),
 ~31 fb⁻¹ Y(5S) scan, 5.7 fb⁻¹ Y(1S)
- PEP-II/Babar
 - 1999-2008 9 Gev e⁻ + 3 GeV e⁺
 - $-471M \Upsilon (4S)$

Bottomonia

History of bottomonium-like states

[Using " $\Upsilon(5S)$ ", " $\Upsilon(6S)$ " as shorthand for $\Upsilon(10860)$, $\Upsilon(11020)$]

- Unexpectedly high rate to $\Upsilon(nS)\pi^+\pi^-$ (n=1,2,3), x10², at $\Upsilon(5S)$
 - PRL 100, 112001 (2008)
- σ(Y(nS)ππ), σ(bb) vs CMS energy: "Y(5S)" peaks offset by 9±4 MeV
 - PRD 82, 091106 (2010)
- Bottomonium-like $Z_b^{\pm}(10610)$, $Z_b^{\pm}(10650)$ in 5 channels at Y(5S): Y(nS) π^{\pm} , h_b(mP) π^{\pm} (m=1,2)
 - PRL 108, 122001 (2012)
- Neutral Bottomonium-like $Z_b^0(10610)$ to $Y(nS)\pi^0$ at Y(5S)
 - PRD 88, 052016 (2013)
- $Z_b^{\pm}(10610)$, $Z_b^{\pm}(10650) \rightarrow Y(nS)\pi^{\pm}$ amplitude analysis yields $J^P=1^+$
 - PRD 91, 072003 (2015)

 $Z_{b}^{\pm}(10610) \rightarrow B^{*}B$, $Z_{b}^{\pm}(10650) \rightarrow B^{*}B^{*}$ observed

- PRL 116, 212001 (2016)

Exclusive events $B^*B^{(*)}\pi^{\pm}$

- \succ Fully reconstructed **B**^{0/±} + π ⁺
- Sign of π^{\pm} correlates w B flavor
- "wrong sign" background + mixed B⁰
- Bπ missing mass: peaks at M_{B*} , M_{B*} + ΔM

Select $B\pi B^*$, $B^*\pi B^*$ events

Probe B*B*, BB*mass through π missing mass _____

- $Z_b^{\pm}(10610) \rightarrow B^*B$, $Z_b^{\pm}(10650) \rightarrow B^*B^*$ observed
 - PRL 116, 212001 (2016)

 $Z_b(10610)$ dominates B*B π

 $Z_b(10650)$ dominates $B^*B^*\pi$

- $Z_b^{\pm}(10610) \rightarrow B^*B$, $Z_b^{\pm}(10650) \rightarrow B^*B^*$ observed
 - PRL 116, 212001 (2016)

B*B(*) dominate Z_b channels observed so far

Channel	Fraction, %		
	$Z_b(10610)$	$Z_b(10650)$	
$\Upsilon(1S)\pi^+$	$0.54^{+0.16+0.11}_{-0.13-0.08}$	$0.17^{+0.07+0.03}_{-0.06-0.02}$	
$\Upsilon(2S)\pi^+$	$3.62^{+0.76+0.79}_{-0.59-0.53}$	$1.39^{+0.48+0.34}_{-0.38-0.23}$	
$\Upsilon(3S)\pi^+$	$2.15^{+0.55+0.60}_{-0.42-0.43}$	$1.63^{+0.53+0.39}_{-0.42-0.28}$	
$h_b(1P)\pi^+$	$3.45^{+0.87+0.86}_{-0.71-0.63}$	$8.41^{+2.43+1.49}_{-2.12-1.06}$	
$h_b(2P)\pi^+$	$4.67^{+1.24+1.18}_{-1.00-0.89}$	$14.7^{+3.2+2.8}_{-2.8-2.3}$	
$B^+ar{B}^{*0}+ar{B}^0B^{*+}$	$85.6^{+1.5+1.5}_{-2.0-2.1}$	• • •	
$B^{*+}ar{B}^{*0}$	• • •	$73.7^{+3.4+2.7}_{-4.4-3.5}$	

Favors "meson molecule" configuration model [Voloshin PRD 87, 091501 (2013)]

σ(Y(nS)ππ), σ(bb) vs CMS energy redux, additional data (tot 22 points)
 – PRD 93, 011101 (2016)

Fitting Model: 2 Breit-Wigner+ flat continuum (coherent+incoherent)

$$|A_{NR}|^{2} + |A_{R} + A_{5S}e^{i\phi_{5S}}BW(M_{5S}, \Gamma_{5S}) + A_{6S}e^{i\phi_{6S}}BW(M_{6S}, \Gamma_{6S})|^{2}$$

- σ(Y(nS)ππ), σ(bb) vs CMS energy redux, additional data
 - PRD 93, 011101 (2016)

Fitting Model: 2 Breit-Wigner+ flat continuum (coherent+incoherent)

No continuum: expect same for other Z_b -dominated events— $h_b(mP)\pi\pi$, $B^*B^{(*)}\pi$

Large continuum-Y(5S) interference

 Υ (nS)ππ+h_b(mP)ππ+BB*π+B*B*π Saturate " Υ (5S)"

 σ(Y(nS)ππ), σ(bb) vs CMS energy redux, additional data

- PRD 93, 011101 (2016)

Fitting Model:

2 Breit-Wigner+ flat continuum (coherent+incoherent)

No continuum: expect same for other dominated events – $h_b(mP)\pi\pi$, $B^*B^{(*)}\pi$

Large continuum-Y(5S) interference

f(nS)ππ+h_b(mP)ππ+BB*π+B*Β*π Saturate "Y(5S)"

- $h_b(mP)\pi\pi$ vs CMS energy, evidence for Z_b^{\pm} at $\Upsilon(6S)$
 - arXiv:1508.06562

 Select h_b(mP) via π⁺π⁻ missing mass

No continuum

– consistent with expectation from Υππ scan, $h_bππ$ at Υ(5S)

$$M_5 = (10884.7^{+3.6}_{-3.4} + 8.9) \,\text{MeV}/c^2,$$

$$\Gamma_5 = (40.6^{+12.7}_{-8.0}^{+12.7}_{-19.1}^{+1.1}) \,\text{MeV},$$

$$M_6 = (10999.0^{+7.3+16.9}_{-7.8-1.0}) \,\text{MeV}/c^2,$$

$$\Gamma_6 = (27^{+27}_{-11})^{5} \text{ MeV},$$

- $h_b(mP)\pi\pi$ vs CMS energy, evidence for Z_b^{\pm} at $\Upsilon(6S)$
 - arXiv:1508.06562

Combine 5 scan points in Y(6S) region

- ➤ Significance at Y(6S)
 - $h_b(1P)\pi^+\pi^- 3.5\sigma$
 - $h_b(2P)\pi^+\pi^- 5.3\sigma$
- Search for Z_b^{\pm} : Plot π^{\pm} missing mass in $h_b(mP)\pi^{+}\pi^{-}$ events \rightarrow

- h_b(mP)ππ vs CMS energy, evidence for Z_b[±] at Y(6S)
 - arXiv:1508.06562

- ➤ Events saturated by Z_b[±] states, no nonresonant contribution
- \triangleright Relative rates to $Z_b(10610)$, $Z_b(10650)$ loosely constrained;
- \triangleright Hypothesis of only Z_h (10610) excluded at 3.3 σ

B_s production:

BELLE-CONF-1605

NEW PRELIMINARY

121.4 fb⁻¹ at Y(5S) Reconstructed B_s modes $Ds^{(*)} \mp \pi^{\pm}$ $J/\psi K^+ K^ J/\psi \pi^+ \pi^ \psi(2S) K^+ K^-$

Relative rates

Bs*Bs*: BsBs*: BsBs

7:0.853±0.106±0.53:0.638±0.094±0.033

from HQ symmetry

7:4:1

[PRL 38, 317 (1977); PRD 85, 034024 (2012)]

- B_s^{*} spin analysis
 - BELLE-CONF-1605

NEW PRELIMINARY

B_s* pair spin analysis

From HQ symmetry r=0.0476 [PRD 87, 094033 (2013)]

- B_s cross section vs CMS energy NEW PRELIMINARY
 - BELLE-CONF-1605

- Consistent with no continuum production
- Clear peak at the Y(5S)
- Y(6S) signal is considerably weaker

Charmonia in B Decays

- First Observation of B⁰→ψ(2S)π⁰
 - PRD 93, 031101 (2016)

$$\psi(2S) \to \ell^+\ell^-, J/\psi\pi^+\pi^-\{J/\psi \to \ell^+\ell^-\} \quad \ell = \mu, \ e$$

$$\mathcal{B}(B^0 \to \psi(2S)\pi^0) = (1.17 \pm 0.17 \pm 0.08) \times 10^{-5}$$

Charmonia in B Decays

- Decays to χ_{c1} and χ_{c2}
 - PRD 93, 052016 (2016)

Inclusive
$$\mathcal{B}(B \to \chi_{c1} X) = (3.03 \pm 0.05 \pm 0.24) \times 10^{-3}$$

$$\mathcal{B}(B \to \chi_{c2} X) = (0.70 \pm 0.06 \pm 0.10) \times 10^{-3}$$

	, ,		
Exclusive Decay	$\mathcal{B}\ (10^{-4})$	$\mathcal{R}_{\mathcal{B}}\chi_{c}_{2}/\chi_{c1}$	
$B^0 \to \chi_{cJ}$	τ^-K^+	0.14 ± 0.02 Search for	2)14
Xc1 Xc2	$4.97 \pm 0.12 \pm 0.28$ $0.72 \pm 0.09 \pm 0.05$	$ \begin{array}{ccc} & B^{\pm} \rightarrow X(3872) \\ & X(3872) \rightarrow \chi \end{array} $	
$B^+ \to \chi_{cJ}$	$\pi^{+}K^{0}$	0.20 ± 0.04	(C)
Xc1	$5.75 \pm 0.26 \pm 0.32$	16	1 1
Xc2	$1.16 \pm 0.22 \pm 0.12$	% 14	
$B^+ o \chi_{cJ}$		< 0.21	
Xc1	$3.29 \pm 0.29 \pm 0.19$	01) 8 1	
$\stackrel{\chi_{c2}}{B^+} \rightarrow \chi_{cJ}$	< 0.62	< 0.21 < 0.21 < 0.21 $< 0.36 \pm 0.05$	
	$3.74 \pm 0.18 \pm 0.24$	0.36 ± 0.05	X _{c2}
Xc1	$1.34 \pm 0.17 \pm 0.09$	3.8 3.85 3.9	3.95 4
$B^0 \rightarrow \chi_{cJ}$		< 0.61 M _{$\chi_{c_1}\pi^*\pi^-$} (GeV/	C ²)
Xc1	$3.16 \pm 0.35 \pm 0.32$		
Xc2	< 1.70		
$B^0 \to \chi_{cJ}$		< 0.25	
Xc1	$3.52 \pm 0.52 \pm 0.24$		
Xc2	< 0.74		18

Charmonia in B Decays (preliminary)

absolute branching fractions of two-body decays B→KX_{cc}

$$\Upsilon(4S) \to B\bar{B}$$

1st B – full reconstruction

2nd B – K from 2-body decay is monoenergetic in CMS

Branching fractions x 10⁴

Charmonia (neutral)

 $> \chi_{c0}$ 4.4±0.9

 $\sim \chi_{c1}$ 7.0±1.3±1.0

 $> \chi_{c2}$ <1.2 (90%CL)

 $> \eta_c(2S)$ 6.0±2.1±0.4

ψ' 6.2±2.0±0.6

 \rightarrow $\psi(3770)$ <2.0

> X(3872) <4.4

Charged Charmonium-like

 \gt Z[±](3900) < 3 (90%CL)

 $ightharpoonup Z^{\pm}(4050) < 3 (90\%CL)$

 $ightharpoonup Z^{\pm}(4430) < 5 (90\%CL)$

Charmonium-like states

- Search for Y(1S) to XYZ
 - PRD 93, 112013 (2016)

State	$N_{ m fit}$	$\sigma_{ m syst}(\%)$	$\Sigma(\sigma)$	$\mathcal{B}_R^{\mathrm{prod}}$
$X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi$	4.8 ± 15.4	18.7	0.3	$< 9.5 \times 10^{-6}$
$Y(4260) \to \pi^{+}\pi^{-}J/\psi$	-31.1 ± 88.9	35.6	_	$< 3.8 \times 10^{-5}$
$Y(4260) \to \pi^{+}\pi^{-}\psi(2S)$	6.7 ± 29.4	35.0	0.2	$< 7.9 \times 10^{-5}$
$Y(4360) \to \pi^{+}\pi^{-}\psi(2S)$	-25.4 ± 30.1	50.0	_	$< 5.2 \times 10^{-5}$
$Y(4660) \to \pi^{+}\pi^{-}\psi(2S)$	-55.0 ± 26.2	40.7	- 1	$< 2.2 \times 10^{-5}$
$Y(4260) \rightarrow K^+K^-J/\psi$	-13.7 ± 10.9	45.8	-	$< 7.5 \times 10^{-6}$
$Y(4140) \rightarrow \phi J/\psi$	-0.1 ± 1.2	11.0	_	$< 5.2 \times 10^{-6}$
$X(4350) \rightarrow \phi J/\psi$	2.3 ± 2.5	10.4	1.2	$< 8.1 \times 10^{-6}$
$Z_c(3900)^{\pm} \to \pi^{\pm} J/\psi$	-26.5 ± 39.1	47.3	_	$< 1.3 \times 10^{-5}$
$Z_c(4200)^{\pm} \rightarrow \pi^{\pm}J/\psi$	-238.6 ± 154.2	48.4	-	$< 6.0 \times 10^{-5}$
$Z_c(4430)^{\pm} \rightarrow \pi^{\pm}J/\psi$	94.2 ± 71.4	34.4	1.2	$< 4.9 \times 10^{-5}$
$Z_c(4050)^{\pm} \to \pi^{\pm} \psi(2S)$	37.0 ± 47.7	46.2	0.4	$< 8.8 \times 10^{-5}$
$Z_c(4430)^{\pm} \to \pi^{\pm}\psi(2S)$	23.2 ± 42.4	47.1	0.1	$< 6.7 \times 10^{-5}$
$Z_{cs}^{\pm} \rightarrow K^{\pm}J/\psi$	-22.2 ± 17.4	48.7	_	$< 5.7 \times 10^{-6}$

Summary

from e⁺e⁻ B-factory experiments

- \succ Y(5S): rich in Z_b , observed in 7+ channels
 - Dominant in B*B(*), favors "meson molecule" model
 - First spin analysis of B_s*B_s* events
- Explorations of energy region Y(5S)-Y(6S)
 - No continuum w Y(nS) $\pi\pi$, h_b(mP) $\pi\pi$, Z_b π , B_s*B_s(*) events
 - Evidence does not support a simple continuum; additional structure probable
- Observations/limits on B decays to charmonium(-like)
- New limits on Y(1S) decays to charmonium-like XYZ