

Multiboson production in final states with W and Z decays at CMS

Rafael Coelho Lopes de Sá (Fermilab) For the CMS collaboration

ICHEP 2016: International Conference in High Energy Physics

Multiboson production with W and Z bosons in the final state

Recent results at 8 TeV

 $WW \rightarrow 2\ell 2v$ $Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$ $W\gamma\gamma \rightarrow \ell\nu\gamma\gamma$

Recent results at 13 TeV

🚰 Fermilab

 $ZZ \rightarrow 4\ell \\ WZ \rightarrow 3\ell v \\ WW \rightarrow 2\ell 2v \\ Z\gamma \rightarrow vv\gamma$

Rafael Coelho Lopes de Sá

ZZ candidate event

Fermilab ZZ cross section @ 13 TeV [CMS SMP-16-001] arXiv:1607.08834 Measurement performed with 2.6 fb⁻¹ of integrated luminosity at 13 TeV. 2.6 fb⁻¹ (13 TeV) Events / 20 GeV 20 Non-resonant $ZZ \rightarrow 2\ell 2\ell'$: $q\bar{q} \rightarrow ZZ/Z\gamma'$ gg → ZZ $gg \rightarrow H \rightarrow ZZ$ $60 < m_{Z1} < 120 \text{ GeV}$ Z/WZ+X 16 $60 < m_{Z2} < 120 \text{ GeV}$ 14

 $\sigma_{\rm fid}(\rm pp \to Z \to \ell^+ \ell^- \ell'^+ \ell'^-) = 30.5^{+5.2}_{-4.7} \,(\rm stat)^{+1.8}_{-1.4} \,(\rm syst) \pm 0.8 \,(\rm lumi) \,\rm fb,$

 $\sigma_{\rm fid}({\rm pp} \to {\rm ZZ} \to \ell^+ \ell^- \ell'^+ \ell'^-) = 34.8^{+4.6}_{-4.2} \,({\rm stat})^{+1.2}_{-0.8} \,({\rm syst}) \pm 0.9 \,({\rm lumi}) \,{\rm fb}.$

SM NLO prediction: 27.9^{+1.0}-1.5 fb (Z region) and 34.4^{+0.7}-0.6 fb (ZZ region) [POWHEG code]

6

CMS ZZ cross section @ 13 TeV [CMS SMP-16-001] Fermilab arXiv:1607.08834 34

• The ZZ region measurement is used to extrapolate to the inclusive cross section $(60 < m_{Z1}, m_{Z2} < 120 \text{ GeV}, \text{ and Z BR from PDG})$. The Z region measurement is used to extract the Z \rightarrow 4 ℓ BR measurement.

 $\sigma(\text{pp} \rightarrow \text{ZZ}) = 14.6^{+1.9}_{-1.8} \text{ (stat)}^{+0.5}_{-0.3} \text{ (syst)} \pm 0.2 \text{ (theo)} \pm 0.4 \text{ (lumi)} \text{ pb.}$

 $\mathcal{B}(Z \to \ell^+ \ell^- \ell'^+ \ell'^-) = 4.9^{+0.8}_{-0.7} \text{(stat)}^{+0.3}_{-0.2} \text{(syst)}^{+0.2}_{-0.1} \text{(theo)} \pm 0.1 \text{(lumi)} \times 10^{-6},$

SM NNLO prediction for inclusive cross section: 16.2^{+0.6}-0.4 fb [MATRIX code]

Uncertainty	$Z \rightarrow 4\ell$	$ZZ \rightarrow 4\ell$
ID efficiency	2–6%	0.4-0.9%
Isolation efficiency	1–6%	0.3–1.1%
Trigger efficiency	2–4%	2%
MC statistics	1–2%	1%
Background	0.7–1.4%	0.7–2%
Pileup	0.4-0.8%	0.2%
PDF	1%	1%
Scale	1%	1%
Luminosity	2.7%	2.7%

8

Measurement done with 2.3 fb⁻¹ of integrated luminosity at 13 TeV

 $p_T(\ell \text{ from } W) > 20 \text{ GeV}$ $p_T(\text{leading } \ell \text{ from } Z) > 20 \text{ GeV}$ $p_T(\text{subleading } \ell \text{ from } Z) > 10 \text{ GeV}$ $l\eta(e/\mu)l < 2.5/2.4$ $76 < m_Z < 106 \text{ GeV}$ MET > 30 GeV $m(\ell\ell) > 4 \text{ GeV}$ $m(\ell\ell\ell) > 100 \text{ GeV}$ $0 \text{ b-quark jets with } p_T > 20 \text{ GeV, } l\eta l < 2.4$

- ✦ ZZ background determined from MC
- Non-prompt background determined from isolation sidebands ('fake rate method')

Fermilab

W and Z BR from PDG $\sigma_{\rm fid}(\rm pp \rightarrow WZ \rightarrow \ell \nu \ell' \ell') = 258 \pm 21 \, (\rm stat)^{+19}_{-20} \, (\rm syst) \pm 8 \, (\rm lumi) \, fb,$

SM NLO prediction: 274⁺¹¹-8 fb [POWHEG code]

 $\sigma(pp \rightarrow WZ) = 39.9 \pm 3.2 \,(stat)^{+2.9}_{-3.1} \,(syst) \pm 0.4 \,(theo) \pm 1.3 \,(lumi) \,pb.$ SM NNLO prediction: $50.0^{+1.1}_{-1.0} \,pb \,[MATRIX \,code]$

0 b-quark jets with $p_T > 20$ GeV, $|\eta| < 2.4$

10 ICHEP 2016 - Multiboson Production with W and Z

60 < m_z < 120 GeV

- With only 2.3 fb⁻¹, the inclusive cross section has large statistical and systematic uncertainties.
- Largest systematic uncertainty contribution from non-prompt background.

 $\sigma(pp \rightarrow WZ) = 39.9 \pm 3.2 \,(\text{stat})^{+2.9}_{-3.1} \,(\text{syst}) \pm 0.4 \,(\text{theo}) \pm 1.3 \,(\text{lumi}) \,\text{pb.}$

SM NNLO prediction: 50.0^{+1.1}-1.0 pb [MATRIX code]

Source of uncertainty	Uncertainty in the cross section
Background with nonprompt μ	5.4%
Background with nonprompt e	3.9%
b tagging	2.1%
$E_{\mathrm{T}}^{\mathrm{miss}}$	2.0%
Electron efficiency	1.9%
Muon efficiency	1.5%
Pileup	0.8%
ZZ cross section	0.4%
ttV cross section	negligible
$Z\gamma$ cross section	negligible
VVV cross section	negligible
Integrated luminosity	3.2%
PDF and scales	1.0%

WW candidate event

WW cross section @ 8 TeV [CMS SMP-14-016] 🛛 🛠 Fermilab

arXiv:1507.03268 [Eur. Phys. J. C76 (2016) nº7, 401]

 Measurement done with 19.4 fb⁻¹ of integrated luminosity at 8 TeV.

 $p_T(l) > 20 \text{ GeV}$ $l\eta(e/\mu)l < 2.5/2.4$ MET > 20 GeV $p_T(ll) > 30/45 \text{ GeV}$ (different/same flavor) m(ll) > 12 GeV $lm(ll) - m_zl > 15$ (same flavor only) DY MVA veto (same flavor only) min(projMET, projTkMET) > 20 GeV Top-quark veto (b-quark jets + soft muons) 0 or 1 jet ($p_T > 30$, $l\eta l < 4.7$)

- Top background determined from data (inverting top and jet vetoes)
- + DY background determined from data (inverting mass and MVA vetoes)
- Non-prompt background determined from isolation sidebands ('fake rate method')
- ✦ Higgs contribution removed using simulation (~4% after event selection)

Rafael Coelho Lopes de Sá

WW cross section @ 8 TeV [CMS SMP-14-016] 🛛 🛱 Fermilab

arXiv:1507.03268 [Eur. Phys. J. C76 (2016) nº7, 401]

$p_{\rm T}^{\rm jet}$ (GeV)	$\sigma_{\text{zero-jet},W \to \ell \nu}$ measured (fb) σ	$f_{zero-jet,W \rightarrow \ell \nu}$ predicted (fb)
>20	223 ± 4 (stat) ± 13 (exp) ± 7 (theo) ± 6 (lumi)	228 ± 1 (stat)
>25	253 ± 5 (stat) ± 14 (exp) ± 8 (theo) ± 7 (lumi)	254 ± 1 (stat)
>30	273 ± 5 (stat) ± 15 (exp) ± 9 (theo) ± 7 (lumi)	$274\pm1(\mathrm{stat})$
$p_{\rm T}^{\rm jet}$ (GeV)	$\sigma_{ m zero-jet}$ measured (pb)	$\sigma_{\text{zero-jet}}$ predicted (pb)
$p_{\rm T}^{\rm jet}$ (GeV) >20	$\sigma_{ m zero-jet}$ measured (pb) $36.2\pm0.6(m stat)\pm2.1(m exp)\pm1.1(m theo)\pm0.9(m lum)$	i) $\sigma_{\text{zero-jet}}$ predicted (pb) $36.7 \pm 0.1 \text{ (stat)}$
$p_{\rm T}^{\rm jet}$ (GeV) >20 >25	$\sigma_{ m zero-jet}$ measured (pb) 36.2 \pm 0.6 (stat) \pm 2.1 (exp) \pm 1.1 (theo) \pm 0.9 (lum 40.8 \pm 0.7 (stat) \pm 2.3 (exp) \pm 1.3 (theo) \pm 1.1 (lum	i) $\sigma_{\text{zero-jet}} \text{ predicted (pb)}$ i) $36.7 \pm 0.1 \text{ (stat)}$ i) $40.9 \pm 0.1 \text{ (stat)}$

Allows direct comparison to resummed QCD calculation of jet veto efficiencies.

Rafael Coelho Lopes de Sá

• Fiducial region with $p_T(l) > 20$ GeV, ln(l) < 2.5, and 0 jets is used to measure differential cross sections. We measured differential cross sections as a function of $\Delta \phi(l)$, m(l), $p_T(l)$ and $p_T(l)$ leading lepton).

15

Rafael Coelho Lopes de Sá

arXiv:1507.03268 [Eur. Phys. J. C76 (2016) nº7, 401]

Inclusive cross section

- Events with same-flavor and different-flavor lepton pair, with 0 and 1 associated jets, are used to measure the inclusive cross section.
- p_T^{WW}-resummed calculation used for extrapolation to the full W-boson decay phase space.

Source	Uncertainty (%)
Statistical uncertainty	1.5
Lepton efficiency	3.8
Lepton momentum scale	0.5
Jet energy scale	1.7
$E_{\rm T}^{\rm miss}$ resolution	0.7
tt+tW normalization	2.2
W+jets normalization	1.3
$Z/\gamma^* \rightarrow \ell^+ \ell^-$ normalization	0.6
$Z/\gamma^* ightarrow au^+ au^-$ normalization	n 0.2
W γ normalization	0.3
W γ^* normalization	0.4
VV normalization	3.0
$H \rightarrow W^+W^-$ normalization	0.8
Jet counting theory model	4.3
PDFs	1.2
MC statistical uncertainty	0.9
Integrated luminosity	2.6
Total uncertainty	7.9

 $\sigma_{W^+W^-}=60.1\pm0.9\,(\text{stat})\pm3.2\,(\text{exp})\pm3.1\,(\text{theo})\pm1.6\,(\text{lumi})\,\text{pb}$

SM NNLO prediction: 59.8^{+1.3}-1.1 pb [Phys. Rev. Lett. 113 (2014) 212001]

Rafael Coelho Lopes de Sá

• Events with high m(ll) are used to measure SMEFT dimension-6 operators.

Coupling constant	This result	Its 95% CL interval	Wor	ld average
	$({\rm TeV}^{-2})$	$({\rm TeV}^{-2})$	((TeV^{-2})
$c_{\rm WWW}/\Lambda^2$	$0.1^{+3.2}_{-3.2}$	[-5.7, 5.9]	-5.5 ± 4.8	(from λ_{γ})
c_W/Λ^2	$-3.6^{+5.0}_{-4.5}$	[-11.4, 5.4]	$-3.9^{+3.9}_{-4.8}$	(from g_1^{Z})
$c_{\rm B}/\Lambda^2$	$-3.2^{+15.0}_{-14.5}$	[-29.2, 23.9]	$-1.7^{+13.6}_{-13.9}$	(from κ_{γ} and g_1^Z)

Rafael Coelho Lopes de Sá

WW cross section @ 13 TeV I CMS SMP-16-006] <u>cds:CMS-PAS-16-006</u>

- Measurement performed with 2.3 fb^{-1} of integrated luminosity at 13 TeV.
- First 13 TeV WW cross section measurement.
- Similar, but simplified event selection with respect to the 8 TeV measurement
 - Different-flavor channel only
 - Simplified Top-quark veto (b-quark jet veto with $p_T > 20$ and $|\eta| < 2.4$)
 - Identical background estimation methods.

Rafael Coelho Lopes de Sá

- Preliminary result with only inclusive cross section.
- Measurement limited by small data sample and large b-tagging uncertainty.

Uncertainty source	Propagation to cross section (%)
Experimental uncertainties	4.9
QCD scales and higher order effects	3.2
PDFs	0.4
Underlying event and parton shower	3.7
Non-prompt normalization	3.0
Top-quark normalization	2.0
$W\gamma^*$ normalization	0.3
Simulation and data control regions sample size	1.4
Total systematic uncertainty	7.4
Total statistical uncertainty	5.0
Luminosity	3.0
Total uncertainty	9.5

Category	Value \pm stat. \pm exp. syst. \pm theo. syst. \pm lumi. [pb]
0-jet	$113.6 \pm 6.3 \pm 5.1 \pm 6.5 \pm 3.3$
1-jet	$135.3 \pm 15.4 \pm 34.0 \pm 14.4 \pm 6.0$
Combination	$115.3 \pm 5.8 \pm 5.7 \pm 6.4 \pm 3.6$

SM NNLO prediction: 120.3±3.0 pb [Phys. Rev. Lett. 113 (2014) 21201 and Phys. Lett. B754 (2016) 275-280]

Rafael Coelho Lopes de Sá

Measurements with photons in the final state

Z(→vv)γ 2.3 fb⁻¹ @ 13TeV

Z(→ℓℓ)γγ 19.4 fb⁻¹ @ 8TeV

Fermilab

 $p_{T}(\gamma) > 175 \text{ GeV}, \ |\eta(\gamma)| < 1.44$ $\sigma_{exp} = 66.5 \pm 19.9 \text{ fb}$ $\sigma_{NNLO} = 65.5 \pm 3.3 \text{ fb}$

 $p_T(\gamma) > 25 \text{ GeV}$ $\sigma_{exp} \times BR = 6.0 \pm 2.9 \text{ fb}$ $\sigma_{NLO} \times BR = 4.76 \pm 0.53 \text{ fb}$

 $p_T(\gamma) > 15 \text{ GeV}$ $\sigma_{exp} \times BR = 12.7 \pm 2.3 \text{ fb}$ $\sigma_{NLO} \times BR = 12.95 \pm 1.47 \text{ fb}$

More details in J. Kunkle's talk

- CMS has a broad program of multiboson production cross section measurements at the LHC. Production cross sections have been measured at 7, 8, and 13 TeV.
- Inclusive, fiducial, and differential measurements are performed. The experimental precision of these results requires, in many cases, 2-loop and resummed QCD calculations to accurately describe the results.
- Rich program of SMEFT measurements performed at 8 TeV. Single channels at 13 TeV already surpass the combined precision of these measurements. Stay tuned!

Rafael Coelho Lopes de Sá

Backup slides

Data collected by the CMS detector

CMS has efficiently collected data at 7, 8 and 13 TeV. This extensive dataset allows us to explore production cross section measurements in different energy regimes, providing stringent tests of the theories describing these processes.

Fermilab

★ Resums logs of the type log(m_{WW}/p_T^{WW})

- Resummed p_T^{WW} distribution is used to reweight parton shower MC generators and obtain exclusive distributions.
- The uncertainty is estimated by varying the resummation (Q), renormalization and factorization scales in the intervals:

Resummation predicts softer spectrum \Rightarrow higher jet veto efficiency \Rightarrow smaller inclusive cross section

