

Prospects for the determination of the CKM angle γ from Dalitz plot analysis of $B^\pm \to DK^\pm\pi^0$ decays

<u>Tim Gershon</u>, Tom Latham, Mark Whitehead, Charlotte Wallace

University of Warwick, CERN, University of Bristol 5th August 2016

Importance of γ from $B \rightarrow DK(\pi)$

• γ plays a unique role in flavour physics

the only CP violating parameter that can be measured through tree decays •

(*) more-or-less

- A benchmark Standard Model reference point
 - doubly important after New Physics is observed

Variants use different B or D decays require a final state common to both D^0 and \overline{D}^0

Power of Dalitz plot analyses

- Interference between resonances in a Dalitz plot provides additional sensitivity to relative phases
 - avoid Q2B assumption that introduces new hadronic parameters
- Example: $B^0 \to DK^+\pi^-$ (PR D79 (2009) 051301, D80 (2009) 092002)

 $D \rightarrow KK, \pi\pi$ (b \rightarrow c and b \rightarrow u amplitudes)

Key point is that D₂*-K⁺ amplitude is flavour-tagged and therefore identical in all final states

О → KK, пп

y from $B^0 \rightarrow DK^+\pi^-$

PR D92 (2015) 012012, PR D93 (2016) 112018

This method recently implemented by LHCb

[technical detail: simultaneous fit using Laura++ (arXiv:1603.00752) with jFit method (arXiv:1409.5080)]

Good sensitivity to CP violation parameters in $B^0 \rightarrow DK^{*0}$ Complementary to results with $B^0 \rightarrow DK^{*0}$, $D \rightarrow K_s \pi \pi$

Interference effects in the D_2^{*-} – K^{*0} overlap region enhance sensitivity to γ

y from $B^0 \rightarrow DK^{*0}$

JHEP 06 (2016) 131

arXiv:1605.01082

PR D93 (2016) 112018

 $B^0 \rightarrow DK\pi DP$ analysis $D \rightarrow KK, \pi\pi$

Comparison of results in terms of $x_{\pm} = r_{B}\cos(\delta_{B}\pm\gamma)$, $y_{\pm} = r_{B}\sin(\delta_{B}\pm\gamma)$

RED:
$$(x_{+},y_{+})$$
, BLUE (x_{-},y_{-})

Apply similar ideas to $B^+ \rightarrow DK^+\pi^0$

Challenge:

– (D π) resonances now not flavour tagged \rightarrow require more complicated formalism compared to B 0 \rightarrow DK $^{+}\pi^{-}$

Possible benefit:

- More interference between $b \rightarrow u \& b \rightarrow c$ amplitudes \rightarrow more sensitivity to y

Extra information:

- Relative magnitude (r_B) of $b \rightarrow u$ & $b \rightarrow c$ amplitudes in (D π) resonances can be known from $B^+ \rightarrow D^+ K^+ \pi^-$ and $B^+ \rightarrow D^- K^+ \pi^+$ decays (N. Sinha PR D70 (2004) 097501)

Previous work:

- Same channel investigated by Aleksan, Petersen & Soffer (PR D67 (2003) 096002), but with assumptions that are now known to be too simplistic

Requires a careful study

Will also be experimentally challenging, but leave such issues aside for now

$B^+ \rightarrow D^+ K^+ \pi^-$ and $B^+ \rightarrow D^- K^+ \pi^+$ decays

PR D91 (2015) 092002, PR D93 (2016) 051101

Recent first observations of both modes by LHCb

$B^+ \rightarrow D^+ K^+ \pi^-$ and $B^+ \rightarrow D^- K^+ \pi^+$ decays

PR D91 (2015) 092002, PR D93 (2016) 051101

Recent first observations of both modes by LHCb

 $r_B(D_2^*(2460)^0K^+)^2 = 0.04 \pm 0.18 \text{ (stat)} \pm 0.06 \text{ (syst)}$ < 0.027 (0.033) @ 90 (95) % CL Angular-moment-weighted data show no D₂*(2460)⁰ component in suppressed mode

Toy model for $B^+ \rightarrow DK^+\pi^0$

Resonances possible in all three two-body combinations Consider K*(892) $^{+}$, D₂*(2460) 0 & D_{s1}*(2700) $^{+}$ as examples

Figure 1: Diagrams for the contributions to $B^{\pm} \to DK^{\pm}\pi^0$ decays from (a,d) $K^{\pm}\pi^0$, (b,e) $D\pi^0$, and (c) DK^{\pm} resonances. Note that (a,b) correspond to $b \to c$ transitions while (c,d,e) are $b \to u$ transitions, and that (a,b,c) are colour-allowed while (d,e) are colour-suppressed.

Table 1: Relative amplitudes for $D_2^*(2460)$, $K^*(892)$ and $D_{s1}^*(2700)$ components in (top) $(\overline{B})^0 \to DK^{\pm}\pi^{\mp}$ and (bottom) $B^{\pm} \to DK^{\pm}\pi^0$ Dalitz plots, expressed in terms of γ and hadronic parameters. The + and - signs correspond to B (i.e. B^+ and B^0) and \overline{B} (B^- and \overline{B}^0) decays respectively. Normalisation factors that are common to all expressions on each row have been dropped.

${}^{^{()}}\!\overline{B}{}^{^{()}}0 o DK^{\pm}\pi^{\mp}$			
	$D_2^*(2460)^{\mp}$	$(\overline{K})^*(892)^0$	$D_{s1}^{*}(2700)^{\pm}$
Flavour specific $(b \to c)$	1	c^{K^*}	0
Flavour specific $(b \to u)$	0	$c^{K^*}r_B^{K^*}\exp\left[i(\delta_B^{K^*}\pm\gamma)\right]$	$c^{D_s^{**}} \exp\left[\pm i\gamma\right]$
CP-even	1	$c^{K^*}\left(1+r_B^{K^*}\exp\left[i(\delta_B^{K^*}\pm\gamma)\right]\right)$	$c^{D_s^{**}} \exp\left[\pm i\gamma\right]$
CP-odd	1	$c^{K^*} \left(1 - r_B^{K^*} \exp\left[i(\delta_B^{K^*} \pm \gamma)\right]\right)$	$-c^{D_s^{**}}\exp\left[\pm i\gamma\right]$
ADS-favoured	1	$c^{K^*} \left(1 + r_B^{K^*} r_D \exp \left[i \left(\delta_B^{K^*} - \delta_D \pm \gamma \right) \right] \right)$	$r_D c^{D_s^{**}} \exp \left[i(-\delta_D \pm \gamma)\right]$
ADS-suppressed	$r_D \exp\left[-i\delta_D\right]$	$c^{K^*} \left(r_D \exp\left[-i\delta_D\right] + r_B^{K^*} \exp\left[i(\delta_B^{K^*} \pm \gamma)\right] \right)$	$c^{D_s^{**}} \exp\left[\pm i\gamma\right]$
$B^{\pm} \to D K^{\pm} \pi^0$			
	$D_2^*(2460)$	$K^*(892)^{\pm}$	$D_{s1}^{*}(2700)^{\pm}$
Flavour specific $(b \to c)$	1	c^{K^*}	0
Flavour specific $(b \to u)$	$r_B^{D^{**}} \exp\left[i(\delta_B^{D^{**}} \pm \gamma)\right]$	$c^{K^*}r_B^{K^*}\exp\left[i(\delta_B^{K^*}\pm\gamma)\right]$	$c^{D_s^{**}} \exp\left[\pm i\gamma\right]$
CP-even	$1 + r_B^{D^{**}} \exp\left[i(\delta_B^{D^{**}} \pm \gamma)\right]$	$c^{K^*}\left(1+r_B^{K^*}\exp\left[i(\delta_B^{K^*}\pm\gamma)\right]\right)$	$c^{D_s^{**}} \exp\left[\pm i\gamma\right]$
CP-odd	$1 - r_B^{D^{**}} \exp \left[i(\delta_B^{D^{**}} \pm \gamma)\right]$	$c^{K^*} \left(1 - r_B^{K^*} \exp\left[i(\delta_B^{K^*} \pm \gamma)\right]\right)$	$-c^{D_s^{**}}\exp\left[\pm i\gamma\right]$
ADS-favoured	$1 + r_B^{D^{**}} r_D \exp \left[i \left(\delta_B^{D^{**}} - \delta_D \pm \gamma \right) \right]$	$c^{K^*} \left(1 + r_B^{K^*} r_D \exp \left[i \left(\delta_B^{K^*} - \delta_D \pm \gamma \right) \right] \right)$	$r_D c^{D_s^{**}} \exp \left[i(-\delta_D \pm \gamma)\right]$
ADS-suppressed	$r_D \exp\left[-i\delta_D\right] + r_B^{D^{**}} \exp\left[i(\delta_B^{D^{**}} \pm \gamma)\right]$	$c^{K^*} \left(r_D \exp\left[-i\delta_D\right] + r_B^{K^*} \exp\left[i(\delta_B^{K^*} \pm \gamma)\right] \right)$	$c^{D_s^{**}} \exp\left[\pm i\gamma\right]$

Table 1: Relative amplitudes for $D_2^*(2460)$, $K^*(892)$ and $D_{s1}^*(2700)$ components in (top) $\overline{B}^{0} \to DK^{\pm}\pi^{\mp}$ and (bottom) $B^{\pm} \to DK^{\pm}\pi^{0}$ Dalitz plots, expressed in terms of γ and hadronic parameters. The + and - signs correspond to B (i.e. B^{+} and B^{0}) and \overline{B} (B^{-} and \overline{B}^{0}) decays respectively. Normalisation factors that are common to all expressions on each row have been dropped.

For $B^0 \to DK^+\pi^-$ sufficient to determine K^{*0} amplitude relative to $D_2^*(2460)$ in flavour-specific and CP (B & \overline{B}) modes only 6 observables & 5 unknowns

Table 1: Relative amplitudes for $D_2^*(2460)$, $K^*(892)$ and $D_{s1}^*(2700)$ components in (top) $(\overline{B})^0 \to DK^{\pm}\pi^{\mp}$ and (bottom) $B^{\pm} \to DK^{\pm}\pi^0$ Dalitz plots, expressed in terms of γ and hadronic parameters. The + and - signs correspond to B (i.e. B^+ and B^0) and \overline{B} (B^- and \overline{B}^0) decays respectively. Normalisation factors that are common to all expressions on each row have been dropped.

For $B^+ \to DK^+\pi^0$ same 6 observables depend on 7 unknowns \to at minimum must allow for CP violation in $B^+ \to D_{2 CP}^{} K^+$ can also impose constraint on $r_B^{}(D_2^{}(2460)^0K^+)^2$

```
D_{s1}^{*}(2700)^{\pm}
                                                                                                                                                                                                  K^*(892)^{\pm}
                                                                                               D_2^*(2460)
Flavour specific (b \to c)
                                                                                 r_B^{D^{**}} \exp \left[i(\delta_B^{D^{**}} \pm \gamma)\right]
                                                                                                                                                                                                                                                                                c^{D_s^{**}} \exp\left[\pm i\gamma\right]
Flavour specific (b \to u)
                                                                                                                                                                                  c^{K^*}r_P^{K^*}\exp\left[i(\delta_P^{K^*}\pm\gamma)\right]
                                                                        1 + r_B^{D^{**}} \exp\left[i(\delta_B^{D^{**}} \pm \gamma)\right]1 - r_B^{D^{**}} \exp\left[i(\delta_B^{D^{**}} \pm \gamma)\right]
                                                                                                                                                                                   (1 + r_B^{K^*} \exp \left[i(\delta_B^{K^*} \pm \gamma)\right]
                                                                                                                                                                                                                                                                                c^{D_s^{**}} \exp\left[\pm i\gamma\right]
                  CP-even
                                                                                                                                                                         c^{K^*}\left(1-r_R^{K^*}\exp\left[i(\delta_R^{K^*}\pm\gamma)\right]\right)
                                                                                                                                                                                                                                                                              -c^{D_s^{**}}\exp\left[\pm i\gamma\right]
                   CP-odd
                                                                   1 + r_B^{D^{**}} r_D \exp \left[ i \left( \delta_B^{D^{**}} - \delta_D \pm \gamma \right) \right]
                                                                                                                                                                c^{K^*} \left( 1 + r_B^{K^*} r_D \exp \left[ i (\delta_B^{K^*} - \delta_D \pm \gamma) \right] \right)
                                                                                                                                                                                                                                                                   r_D c^{D_s^{**}} \exp \left[i(-\delta_D \pm \gamma)\right]
            ADS-favoured
                                                              r_D \exp \left[-i\delta_D\right] + r_B^{D^{**}} \exp \left[i(\delta_B^{D^{**}} \pm \gamma)\right]
                                                                                                                                                           c^{K^*}\left(r_D\exp\left[-i\delta_D\right] + r_B^{K^*}\exp\left[i(\delta_B^{K^*} \pm \gamma)\right]\right)
         ADS-suppressed
                                                                                                                                                                                                                                                                                c^{D_s^{**}} \exp\left[\pm i\gamma\right]
```


Use of $(x_{\pm} + iy_{\pm})$ as statistically well-behaved fit variables less straightforward

Relative K*/D** amplitude however has simple replacement to 1^{st} order in r_{R}^{D**}

$$X_{\pm} + iy_{\pm} \rightarrow (X_{\pm}^{K^*} - X_{\pm}^{D^{**}}) + i(y_{\pm}^{K^*} - y_{\pm}^{D^{**}})$$

Table 1: Relative amplitudes for $D_2^*(2460)$, $K^*(892)$ and $D_{s1}^*(2700)$ components in (top) $\overline{B}^{0} \to DK^{\pm}\pi^{\mp}$ and (bottom) $B^{\pm} \to DK^{\pm}\pi^{0}$ Dalitz plots, expressed in terms of γ and hadronic parameters. The + and - signs correspond to B (i.e. B^{+} and B^{0}) and \overline{B} (B^{-} and \overline{B}^{0}) decays respectively. Normalisation factors that are common to all expressions on each row have been dropped.

In both cases can gain from including ADS-suppressed decays ($r_{_D}$ and $\delta_{_D}$ constrained from external measurements)

THE

Summary

- $B^+ \rightarrow DK^+\pi^0$ provides interesting possibilities to measure CKM angle y
 - already used by B factories under B⁺ → DK*(892)⁺ Q2B approximation
 - future precise measurements will require correct handling of DP interference effects
- Hadronic parameters related to $b \rightarrow u$ contribution in $B^+ \rightarrow (D\pi^0)_{D^*}K^+$ decays complicate matters compared to $B^0 \rightarrow DK^+\pi^-$ DP analysis
 - not considered in detail in previous work on this mode
 - more observables needed, but enough are available
- Detailed sensitivity study in progress
 - different strategies for fit under evaluation

