International Linear Collider (ILC)

- Technical Progress and Prospect -

Linear Collider Collaboration (LCC)

presented by Akira Yamamoto (KEK/LCC)

ICHEP-2016, Chicago, August 6, 2016

Acknowledgments

I would thank:

L. Evans, M. Harrison, N. Walker, D. Reschke, O. Napoly, E. Harms, S. Belomestnykh, A. Grassellino, S. Aderhold, S. Michizono, N. Terunuma, K. Kubo, T. Okugi, H. Hayano, E. Kako, Y. Yamamoto, and Linear Collider Collaboration,

for their kindest cooperation and advices to prepare for this report.

ILC Acc. Design Overview (TDR)

[••]

Nano-beam Technology

Nano-beam technology advanced by ATF Collaboration, hosted at KEK.

N. Terunuma

ATF/ATF2: Accelerator Test Facility

Progress in FF Beam Size and Stability at ATF2

Goal 1:

Establish the ILC final focus method with same optics and comparable beamline tolerances

- ATF2 Goal : **37** nm \rightarrow ILC **6** nm
 - Achieved **41** nm (2016)

Goal 2:

Develop a few nm position stabilization for the ILC collision by feedback

- FB latency 133 nsec achieved (target: < 300 nsec)
- positon jitter at IP: 410 → 67 nm (2015) (limited by the BPM resolution)

SRF Technology

European XFEL SRF being Completed

Progress:

2013: Construction started 2015: SRF cav. (100%) completed CM (70%) progressed

Further Plan:

(FEL site

2016: E- XFEL acc. completion 2016/E: E-XFEL beam to start

Acc. : ~ 1/10 scale to ILC-ML SRF system: ~ 1/20 scale to ILC-SRF

1500

1000

1.3 GHz / 23.6 MV/m 800+4 SRF acc. Cavities 100+3 Cryo-Modules (CM)

500

E-XFEL: SRF Cavity Performance (as received)

Cryomodule Performance: VT vs. MT

- Significant gradient degradation from XM6 to XM23, while CEA and Alsyom put all their effort in achieving production goal of 1 CM/week: an audit of string and module assembly was conducted by CEA on XM26
- A simplification of the clean room procedures was introduced at XM54: no degradation after

O. Napoly, TTC2016

Fermilab : CM2 reached <31.5 MV/m >

CERN Courier December 2014

Accelerators ILC-type cryomodule makes the grade

For the first time, the gradient specification of the International Linear Collider (ILC) design study of 31.5 MV/m has been achieved on average across an entire ILC-type cryomodule made of ILC-grade cavities. A team at Fermilab reached the milestone in early October. The cryomodule, called CM2, was developed to advance superconducting radio-frequency technology and infrastructure at laboratories in the Americas

region, and was assembled and installed at Fermilab after initial vertical testing of the cavities at Jefferson Lab. The milestone – an achievement for scientists at Fermilab, Jefferson Lab, and their domestic and international partners in superconducting radio-frequency (SRF) technologies – has been nearly a decade in the making, from

Cryomodule test at Fermilab reached < **31**° 5 > MV/m, exceeding ILC specification

ILC Progress and Prospect

Y. Yamamoto, E. Kako, H. Hayano

KEK-STF: Cavity/CM Performance, and RF and Beam Test Preparation

81

SRF cavity Gradient (MV/m) before/after CM Assembly												
Module	CM1a				CM1b				CM2a			
Cav. #	1	2	3	4	5	6	7	8	9	10	11	12
V. Test (CW)	37	36	38	36	37	35	39	36	12	36	32	32
in CM (pulse)	39	37	35	36	26	16	26	32	18	34	33	32
Gradient stable Degraded						Gr	adien	it stak	ble			
* <g> : 30 MV /m (12 Cav.) , 35 MV/m (best 8)</g>												

FY14: CM1+CM2a (8+4) assembly FY15: Cavity individually tested in CM RF power system in preparation FY16: **8-cavity** string to be RF tested FY17: Beam Acceleration expected (to reach > 250 MeV)

<u>Nano-beam Technology:</u>

KEK-ATF2: FF **beam size (v**) of 41 nm at 1.3 GeV (to go 37nm as a primary goal) FF beam position stability of 67 nm (limited by monitor resolution)

<u>SRF Technology :</u>

SRF cavity grad. in TDR: reached G-max = 37 MV/m and an Yield of 94 % at > 28 MV/m Beam acceleration: DESY-FLASH and KEK-STF realized 9 mA, and 1 ms

European XFEL: Cavity production at RI/EZ, 100% (800+4) completed, <G> = ~ 30 MV/m.

- Cryomodule (CM) assembly, 100% (100+3) completed, <G> =~28 MV/m.
- » {last CM, delivered from CEA-Saclay to DESY on 29 July, 2016}
 Fermilab : CM reached the ILC gradient specification: G ≥ 31.5MV/m
 KEK-STF2: The best 8-cavity string for beam acceleration: G ≥ 31.5 MV/m.

ADI: Accelerator Design and Integration

LCC-ILC: working for further robust and cost-effective design and R&D

ILC Parameters, demonstrated, by 2016

Characteristics	Parameter	Unit	Demonstrated	
Nano-bam:				
ILC-FF beam size (y) KEK-ATF-FF equiv. beam size (y)	5.9 37 (reaching 41)	nm nm	KEK-ATF	
SRF:				
Average accelerating gradient	<u>31.5 (±20%)</u>	MV/m	DESY, <u>FNAL,</u> JLab, Cornell, KEK,	
Cavity Q ₀	10 ¹⁰			
(Cavity qualification gradient	35 (±20%)	MV/m)		
Beam current	5.8	mA	DESY-FLASH), KEK-STF	
Number of bunches per pulse	1312		DESY	
Charge per bunch	3.2	nC		
Bunch spacing	554	ns		
Beam pulse length	730	ms	DESY, KEK	
RF pulse length (incl. fill time)	1.65	ms	DESY, KEK, FNAL	
Efficiency (RF→beam)	0.44			
Pulse repetition rate	5	Hz	DESY, KEK	

Status and Prospect for ILC

KEK-ILC Action Plan Issued, Jan. 2016

https://www.kek.jp/en/NewsRoom/Release/20160106140000/

	Pre-Preparation Stage	Main Preparation Stage					
	present (we are here)	P1	P2	P3	P4		
ADI	Establish main parameters	Verify parameters w/ simulations					
SRF	Beam acc. with SRF cavity string, Cost Reduction R&D (proposed)	Demonstrate mass-production technology, stability, hub-lab functioning, and global sharing					
Nano-beam	Achieve the ILC beam-size goal	Demonstrate the nanobeam size and stabilize the beam position					
e+	Demonstrate technological feasibility	Demonstrate both the undulator and e-driven e+ sources					
CFS	Pre-survey and basic design	Geology survey, engineering design, specification, and drawings					

A plan for ILC Cost-Reduction R&D in Japan and US focusing on SRF Technology, in 2~3 years

Based on recent advances in technologies;

- Nb material preparation
 - w/ optimum RRR and clean surface
- SRF cavity fabrication for high-Q and high-G

-w/ a new baking recipe provided by Fermilab

- Power input coupler fabrication
 - w/ new (low SEE) ceramic without coating
- Cavity chemical process

- w/ vertical EP and new chemical (non HF) solution

• Others

Summary

- International Linear Collider (ILC) being prepared for an energy frontier e+e- collider at C.E. 500 GeV, extendable to 1 TeV.
- Nano-Beam and SRF technologies advanced particularly well integrated at ATF, and at European XFEL.
- The ILC key accelerator technologies being ready for the project realization.

Backup

Important Energies in ILC

••

The Standard Model **125 GeV Higgs discovery reinforcing the ILC importance** Integrated Luminosity (ab⁻¹) 2 ν_{τ} V_{μ} П **Physics confident:** → Higgs and Top Quark **New Physics beyond SM:** Learn "everything" about H (125) • Probe dynamics of EWSB Direct or indirect **DM searches** ** 1 Evidence for BSM physics Ζ Hints of a new mass scale \sim LEP ttH $reached \rightarrow$ E cm 200 400 500 300 600 (GeV)

ILC GDE to LCC

[••

\$\$\$

XFEL Extrapolation to ILC - VT

- ILC TDR assumed VT acceptance > 28MV/m (XFEL >20 MV/m)
 - Average of 35 MV/m (XFEL 26 MV/m)
 - Assumed first-pass yield: 75%
 - 25% cavities retreated to give final yield of 90% >28 MV/m (35 MV/m average)
 - 10% over-production assumed in value estimate

First+Second+third	riela >28 iviv/m		•		91%	
pass	Average >28 MV/m				33.4 MV/m	
			→ ILC	SRF specific	ation nearly	y reached
More re-treatment	s - but mostly only	HPR				

Number of average tests/cavity increases from 1.25 to 1.55 (1st+2nd) or 20% over-production or additional re-treat/test cycles

XFEL cavity results • ECFA LC 2016 • Santander - Spain • 31-05-2016 Nicholas Walker • DESY • nicholas.walker@desy.de

