



## The XENON Collaboration





### The XENON100 Detector





- Dual phase xenon TPC
- Located at LNGS
- 161 kg liquid xenon (62 kg sensitive volume)
- Active liquid xenon veto
- Careful material screening and selection
- Long term operation
  - >450 live days





E. Aprile et al. (XENON100), Phys.Rev.D83:082001,2011

E. Aprile et al. (XENON100), Astroparticle Physics 35, 573 (2012).



### Annual Modulation of DM





- Time dependence of DM scattering rate
- Due to Earth-Sun motion in galaxy
- Earth-WIMP velocity different summer vs winter
- Higher rate in summer than winter

#### DAMA/LIBRA

- Observes modulation in 2 6 keV range
  - 1.3 ton-yr exposure
  - 14 annual cycles
  - 9.3σ
- Claim due to DM
  - Correct period and phase
  - Not seen in other experiments



Figure from R. Bernabei et al., Eur. Phys. J. C 56 (2008) 333



### Constraints on DAMA Result



#### Leptophillic dark matter

- Axial vector coupling
- Dominant scattering with electrons
- Nuclear recoils → Electronic recoils
- Look for DM in ER spectrum





Capitalize on similar electronic structure of Xe and Nal



- Look for DC rate in summer data
- Consider all events as DM candidates
- Exclude:
  - WIMP-electron axial vector coupling @  $4.4\sigma$
  - Luminous DM @ 4.6σ
  - Mirror DM @ 3.6σ

XENON Coll., Science 349 no. 6250 pp. 851-854 (2015)



### **Modulation Search**





- Unbinned profile likelihood
- 225 live day data sample from XENON100
- Random period: No significant signal!
- Fixed 1 yr period, unconstrained phase
- Weak signal in 2.0 5.8 keV range
- Combination of phase/amplitude inconsistent with DAMA interpretation as axial-vector coupling @ 4.8σ



- New combined data result coming soon
  - New and published data
- Will constrain periods > 1yr



### XENON1T





- Reduce background 100X from XENON100
  - Goal: 2 t-yr exposure
- Increase sensitivity by factor 100 compared to XENON100
  - 1.6 X 10<sup>-47</sup> cm<sup>2</sup> @ 50 GeV WIMP

- Located in LNGS
- Many systems upgraded from successful operation of XENON100
- 3.2 tons Xe (2.0 t active volume)
- Water Cherenkov muon veto
- Cyrogenics plant for high purity xenon (~10t)





## Xenon Handling



#### **Purification**

- · Continually clean Xe
- ~100 SLPM
- Parallel circuits for optimization and maintenance
- Custom xenon pump
  - Chart QDrive

#### **Cryogenics**

- Externally cool and liquefy Xe
- ~10 tons Xe @ 170K
- Redundant systems and LN<sub>2</sub> for safety

#### Feedthrough Pipe

- Liquid and gaseous Xe
- Cables
- Connections through water tank

### Xe Storage ReStoX

- Store up to 7.6 T tons
- Liquid or gas phase
- Safety recovery system

#### **Distillation**

- Custom Kr filtration system
- $Kr_{nat}/Xe \sim 10^{-14}$
- Process Xe inventory in ~1 month

#### <u>Cryostat</u>

- Double walled SS vessel
- Houses TPC (for 1T and nT!)

All designed for XENON1T and XENONnT!



### Muon Veto









- 10 m high X 9.6m diameter
- Interior lined with 3M specular reflector foil
- 84 high QE 8" Hamamatsu PMTs R5912
- Muon induced neutron background < 0.01evt/yr</li>
- Trigger efficiency > 99.5% for neutrons with muons in water tank, ~78% with muons outside
- Construction done in December 2013

E. Aprile et al. (XENON Collaboration), JINST 9, P11006 (2014)



### **PMTs**

Xe

- 3" Hamamatsu R11410
- Custom designed for low radioactivity
- 34% QE @ 175 nm
- Low T tests and characterization prior to installation
- In situ calibration















### TPC











- Largest DM detector ever built!
- Filled with LXe since April 2016
- 248 PMTs
- 96 cm drift X 96 cm diameter
- High reflectivity teflon walls

- TPC now operational!
- In conjunction with commissioning of remaining systems



# Rensselaer MC Prediction: ER Background





| Source              | Background $[y^{-1}]$ | Fraction [%] |
|---------------------|-----------------------|--------------|
| Materials           | $30 \pm 3$            | 4.1          |
| $^{222}\mathbf{Rn}$ | $620 \pm 60$          | 85.4         |
| $^{85}{ m Kr}$      | $31 \pm 6$            | 4.3          |
| $^{136}\mathbf{Xe}$ | $9\pm1$               | 1.4          |
| Solar neutrinos     | $36 \pm 1$            | 4.9          |
| Total               | $720 \pm 60$          | 100          |

2 – 12 keVee, 1t fiducial, before ER discrimination

#### <u>Impurities in the xenon:</u>

- <sup>222</sup>Rn
  - Minimize leakage into system
    - Orbital welds, metal seals, hermetically sealed pumps
  - Low Rn emanation materials
    - Dedicated emanation measurements
- 85Kr
  - Custom distillation column
  - Reduce to Kr/Xe < 10<sup>-14</sup>

#### Materials:

- 60% from cryostat
- 25% from PMTs and bases
- 15% from TPC stainless steel
- 1% from copper and PTFE

Eur. Phys. J. C (2015) 75: 546. XENON Collaboration, JCAP04 (2016)027.



# Rensselaer MC Prediction: NR Background





| Source     | Count [t <sup>-1</sup> y <sup>-1</sup> ] |
|------------|------------------------------------------|
| Radiogenic | 0.5 ± 0.1                                |
| Muon       | <0.01                                    |
| Neutrino   | (1.1 ± 0.2) x 10 <sup>-2</sup>           |
| Total      | <1                                       |

5-50 keVr, 1T fiducial, before ER discrimination

XENON Collaboration, JCAP04 (2016)027.

#### Radiogenic neutrons:

- $(\alpha, n)$  reactions from U and Th chains and spontaneous fission
- Single scatters look like WIMP signal
- Reduction via careful material selection and minimization of material

#### Muon induced neutrons:

- Muon interactions in rock and detector
- Active muon veto
  - > 95% tagging efficiency for muons crossing veto
  - > 70% tagging efficiency for only showers in veto

#### <u>Coherent neutrino scattering:</u>

- Nearly no contribution above 5 keV threshold
- Decreased threshold will allow "new physics channel"



### Measured BG at Zero Field







# Calibrations Underway



- External <sup>137</sup>Cs source
- Detector unshielded!
- Full absorption peak clearly separable
- First look at combined S1 + S2 energy scale
- Corrected for light collection and electron lifetime
- Already very impressive
- Will improve with shielding and better detector characterization





# Reducing the Rate



#### Muon veto now full of water

- Water goes up
- Rate goes down!
- Only shielding, no veto yet!







# **Projected Sensitivity**





- Only need 20 days to reach LUX/PandaX sensitivity!
- Commissioning nearly complete
- Operations of TPC and other systems already underway

- 2.0 X 10<sup>-47</sup> cm<sup>2</sup>
- @ 50 GeV WIMP
- 2 t-yr data



# Upgrade: XENONnT



- Quick upgrade of TPC and inner cryostat
- All major systems remain unchanged
- Construct TPC in parallel to XENON1T operation
- Start data taking by 2019





### What is needed for nT



- New TPC dimensions
- Optimize target mass
- Fit inside existing cryostat



All other systems will be reused!

- Additional PMTs
  - Same Hamamatsu R11410
    - Reuse the XENON1T PMTs
  - ~500 total (250 top and bottom)
- Additional gas
  - 7.25 t needed (7.5 t including gas)
  - 3.7 t already in place
  - Acquisition ongoing





# **XENONnT Sensitivity**





- 1.6 X 10-48 cm2 @ 50 GeV WIMP
- 20 t-yrs exposure



# **Summary and Outlook**



#### XENON100:

- Longest running LXe DM detector to date!
- New constraints of "exotic" DM models
- Axial vector coupling constrained
- Disagrees with DAMA @ > 4σ for varied models

#### XENON1T:

- · Commissioning nearly complete
- First DM data expected in 2016
- 20 days to reach LUX/Panda X sensitivity
- 2 t-yr exposure → 1.6 X 10<sup>-47</sup> cm<sup>2</sup> @ 50 GeV

#### XENONnT:

- Quick upgrade of TPC
- Designed/built in parallel to 1T operation
- DM run to begin by 2019
- 20 t-yr exposure → 1.6 X 10<sup>-48</sup> cm<sup>2</sup> @ 50 GeV