First results from two deep Askaryan Radio Array stations

08/05/2016

Thomas Meures

Neutrinos from the GZK mechanism

UHE process

UHECR

GZK effect:

Cosmic ray interaction with CMB

- → Resonant at ~10^19.5eV
- → Cosmic rays don't reach us
- → Neutrinos are produced

The measured Cosmic ray flux

Neutrinos carry exclusive information about UHECRs:

- Composition
- Source distribution
- Energy spectrum

You are here!

Strong evidence for GZK-neutrinos
But: Expect <1 v / km^3 / yr

UHE Neutrino detection via the Askaryan effect

The Askaryan effect:

An excess negative charge (~20%) built up in neutrino induced cascades through:

- Compton scattering
- Other ionizing effects
- → Moving current, emits electromagnetic radiation
- → Coherent for radio wavelength

The advantages of radio waves:

- visible within ~1 km in ice
- → Observe big detector volume with few sensors
- → Very cost efficient
- → Effect has been verified in beam tests: arXiv:hep-ex/0611008

Detector site

The Askaryan Radio Array (ARA)

One station:

- Measurement system:
 - 4 holes, 20 m spacing
 - Deployed at depth of 180 m
 - 16 antennas, 150 MHz 850 MHz
 (8 horizontally polarized., 8 vertically pol.)
- Calibration system: 4 pulsing antennas
 Each station is an autonomous detector!

- 37 antenna stations planned (7-8M\$)
- spaced by 2 km
 → Maximizing effective volume by avoiding overlap
- 180m Depth to avoid ray bending effects

- Prototype station: Testbed, first results: arXiv:1404.5285
- 3 deep stations deployed and operating at the current date
- 2 additional stations funded for 17/18 deployment

The detector Hardware and DAQ

What if ...

we found a neutrino

For incoming angle and Energy we need:

Angular reconstruction

Calibration needed

ARA construction: Drilling

ARA Construction: Deployment and commissioning

Commissioning

The detector performance

Accumulated ~224 days of live time in 10 months

31 of 32 channels performing well

2013 Data analysis: The challenge

What we roughly see within 10 months in 2 stations:

Trigger at ~5HZ → 300 000 000 events

Neutrinos (Ahlers2010)
 0.2

• Thermal noise 299.998 M

Impulsive radio background 2000

We need to exclude all thermal noise (10TB of data)

Simple filter: Check consistency of antenna hits with plane wave

Look like neutrino events, but ...

- Only neutrinos can penetrate the ice deeply and produce a point-like radio source
- → reconstruct the vertex location
- → reject all background by angular cuts:
 Calibration pulsers, human activity, etc...

Reconstruction performance

Results

No event in signal region!

Systematic errors

Relative error on the final effective area

Dominant errors are:

- Interaction cross section uncertainties: never measured at these energies
- Signal amplitude:
 Calibration of the signal chain still relatively coarse
 - → This can be improved significantly

ARA37 sensitivity

No neutrino candidate found (arXiv:1507.08991), → at expectation of 0.1 neutrinos from Ahlers2010 estimation after applying cuts.

ARA37 best neutrino sensitivity at 10^18eV

Need new ideas for the PeV range!

A look at the events which we have found

We can follow airplanes:

 Observed object is moving at a speed of 400 km/h at a height of roughly 500 m

→ We can see radio events and reconstruct them properly!

Where did this come from?

→ "NO" South Pole activity

Zenith reconstruction: 45 degree

suggests event generation at ice-air boundary

Possibly transition radiation from CR air

showers: <u>arXiv:1503.02808</u>

Go further from here within ARA

Let's assume we are better in analyzing than in triggering!

Phased radio array trigger:

(see A. G. Vieregg et. al., <u>arXiv:1504.08006</u>)

- Use N antennas, combine signals with different phase shift
- Can theoretically gain factor \sqrt{N} in signal-to-noise ratio for triggering

Figure J. Kelley

Phased radio array trigger:

- Technically challenging!
- Working towards deployment with ARA stations in 2017/18

Summary & Conclusions

- Good science case for radio neutrino detection
- initial ARA stations are deployed, calibrated and produce useful data
- First analysis performed → neutrino limit
- Working on trigger improvement
- 2 more ARA stations will be deployed in 2017/18: Improves shown sensitivity by factor 2.5

ARA is an operating detector and when enlarged ready for a GZK neutrino detection

BACKUP

The askaryan effect

- Predicted in 1962, 1965 by G. Askaryan
- Verified at SLAC beam in sand (2001), salt(2005), ice (2007)
- Electron beam emulates the EM cascade

Find details here: arXiv:hep-ex/0611008

Motivation for detector geometry

Ray bending:

Changing index of refraction in top 200 m of the ice

- → Makes reconstruction difficult
- → Produces shadowed areas

2 km station spacing maximizes detector acceptance at 10^18eV

Thermal noise filtering

Ant 2

200

150

Vertex reconstruction

3. Set up and solve system of linear equations

Signal arrival time from positions:

$$c^{2}(t_{v}-t_{i})^{2} = (x_{v}-x_{i})^{2} + (y_{v}-y_{i})^{2} + (z_{v}-z_{i})^{2}$$

Use difference between antennas & reorder

→ linear equation for vertex coordinates

$$\mathbf{x}_{v} \cdot 2x_{ij} + \mathbf{y}_{v} \cdot 2y_{ij} + \mathbf{z}_{v} \cdot 2z_{ij} - \mathbf{t}_{v,ref} \cdot 2c^{2}dt_{ij}$$
$$= r_{i}^{2} - r_{j}^{2} - c^{2}(dt_{i,ref}^{2} - dt_{j,ref}^{2})$$

This can be represented by:

$$\mathbf{A}\vec{v} = \vec{b}$$

Solve with matrix decomposition tools

4. Apply quality criteria

Main quality criterion is residual:

$$res = \left\| \frac{b}{|b|} - \frac{A \cdot v}{|A \cdot v|} \right\|^2 \cdot \frac{1}{N_{ch}}$$

Tells us how well reconstructed position fits time differences