

### **ICHEP 2016**

Chicago, IL August 3-10, 2016



Search for SUSY in Photonic and Tau Channels with the ATLAS Detector

#### **Bruce A. Schumm**

Santa Cruz Institute for Particle Physics University of California, Santa Cruz



for the ATLAS Collaboration

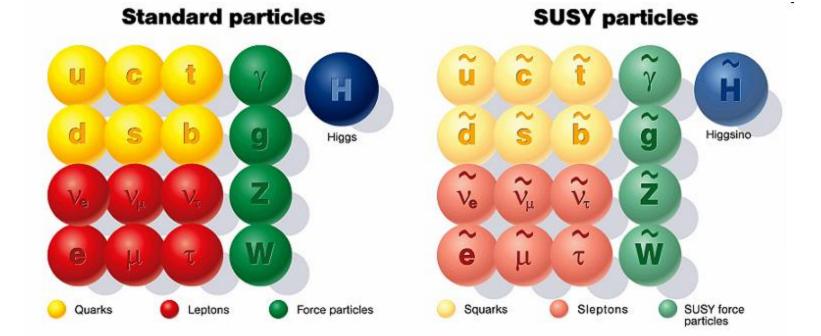
## **ATLAS Photonic and Tau-Based SUSY Signatures**



We have performed SUSY-inspired searches for events in 13 TeV data using three general signatures, all requiring significant  $E_t^{miss}$ :

**Diphoton + E\_t^{miss}:** 1 Signal Region (SR) requiring two photons plus  $E_t^{miss}$ , with no explicit requirements on the presence of other objects, but requiring significant overall transverse energy. (3.2 fb<sup>-1</sup>)

**Photon + jets:** 2 SRs requiring one or more photons accompanied by jets, plus E<sub>t</sub><sup>miss</sup>. Significant overall transverse energy also required. (13.3 fb<sup>-1</sup>; **FIRST PUBLIC PRESENTATION**).


 $\tau$  + X : Six SRs requiring one or more hadronic  $\tau$  lepton decay, significant  $E_t^{miss}$  and at least one hard jet, and sometimes accompanied by substantial transverse energy/mass. (3.2 fb<sup>-1</sup>).



**Bruce Schumm** 



#### SUSY posits a complete set of mirror states with $S_{SUSY} = |S_{SM} - \frac{1}{2}|$



- Stabilize Higgs mass for GUTs
- Can provide reasonable dark-matter candidate (Et miss)
- SU(3) x SU(2) x U(1) coupling unification

#### **SUSY Breaking**

But we know that SUSY is broken...



**SUGRA:** Local supersymmetry broken by **supergravity** interactions Phenomenology: LSP (usually  $\chi_1^0$ ) carries  $E_t^{miss}$ .

**GMSB:** Explicit couplings to intermediate-scale ( $M_{EW} < \Lambda < M_{GUT}$ ) "messenger" **gauge** interactions **mediate** SUSY breaking. Phenomenology: Gravitino ( $\tilde{G}$ ) LSP ( $E_t^{miss}$ ); NLSP is  $\chi_1^0$  or slepton.  $\chi_1^0$  tends to be bino-like  $\rightarrow$  photonic signatures. Slepton tends to be  $\tilde{\tau} \rightarrow$  tauonic signatures.

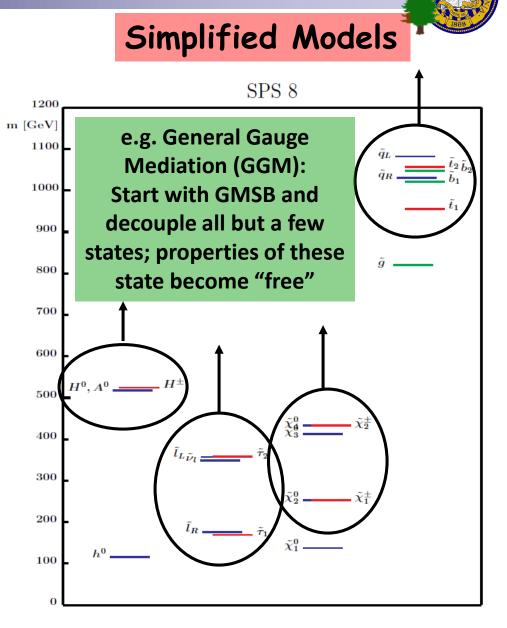
**AMSB:** Higher-dimensional SUSY breaking communicated to 3+1 dimensions via "Weyl **anomaly**".

Phenomenology: LSP tends to be  $\widetilde{W}$ , with  $\chi_1^+$ ,  $\chi_1^0$  nearly degenerate.

The **SUGRA** and **GMSB** scenarios supply the inspiration for the three signatures we have explored...



#### **Classes of Models**


## Minimal Models

- GUT unification → few parameters
- mSUGRA/CMSSM, GMSB

#### e.g. GMSB:

- **Λ:** SUSY breaking scale
- M<sub>mes</sub>: Messenger scale
- N<sub>5</sub>: Number of messenger fields
- **tanβ:** Ratio of vev for the two Higgs doublets
- **C**<sub>grav</sub>: Gravitino mass parameter
- **sgn(μ):** Sign of higgsino mass term

e.g. the "SPS 8" model is just a specific set of choices for the GMSB parameters.





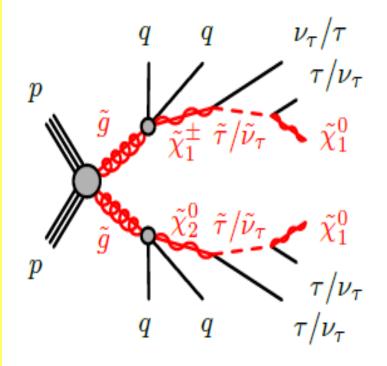


**τ** + **X**: GMSB model with N<sub>5</sub> = 3, leading to states with slepton NLSP.  $\Lambda$  and tan $\beta$  are free parameters. Signal dominated by weak production for  $\Lambda > 90$  TeV.

**Diphoton + E** $_t^{miss}$ : Only accessible states are gluino and bino-like  $\chi_1^0$  NLSP. Gluino and  $\chi_1^0$  masses are free parameters. Signal solely from strong production of gluino pairs.

**Photon + jets:** Accessible states are gluino, bino, higgsinos. NLSP is bino-higgsino  $\chi_1^0$  admixture with 50/50 branching to  $\gamma + \tilde{G}$  and  $Z^0 + \tilde{G}$ . Signal selection sensitive only to gluino-pair production. Gluino and combined bino/higgsino mass parameter are free.

NB: All states decay promptly, except gravitino  $\tilde{G}$ , which is stable.




#### mSUGRA-Inspired Model (Tau Signature)



- Two-step simplified model
- Gluino production followed by decay to intermediate state with  $\chi_1^{\pm}$  and  $\chi_2^{0}$
- Decay of  $\chi_1^{\pm}$  and  $\chi_2^{0}$  proceeds through  $\tilde{\tau}$ ,  $\tilde{\nu}_{\tau}$  to  $\chi_1^{0}$  LSP (suggested by SUSY "naturalness" requirements)
- Free parameters are gluino and χ<sub>1</sub><sup>0</sup> masses, with intermediate mass scale given by

$$m_{\tilde{\chi}_{2}^{0}} = m_{\tilde{\chi}_{1}^{\pm}} = (m_{\tilde{g}} + m_{\tilde{\chi}_{1}^{0}})/2$$

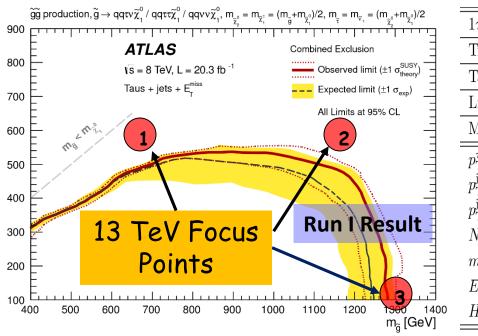




#### **Tau and Photonic SUSY Models Summary**



#### Summary of Main Attributes of SUSY Models Used to Guide the Formulation of Tau and Photonic SUSY Analyses


| Signature                             | Model              | NLSP                                                                                      | Production and Free<br>Parameters                    |
|---------------------------------------|--------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                       |                    |                                                                                           |                                                      |
| τ <b>+ X</b>                          | mSUGRA<br>inspired | $\chi_1^{\pm}, \chi_2^0$ NLSP with stauonic couplings                                     | Strong production Gluino mass, $\chi_1^0$ mass       |
| τ + Χ                                 | GMSB               | Slepton (dominated by stau over much of the parameter space)                              | Strong and EW<br>production<br><mark>Λ, tan</mark> β |
| <b>Diphoton + E</b> t <sup>miss</sup> | GGM                | Bino-like $\chi_1^0$                                                                      | Strong production Gluino mass, $\chi_1^0$ mass       |
| Photon + jets                         | GGM                | Higgsino-bino $\chi_1^0$ admixture<br>with 50/50 branching to $\gamma/Z^0$<br>+ gravitino | Strong production Gluino mass, $\chi_1^0$ mass       |



#### Single-Tau Analysis (3.2 fb<sup>-1</sup>)



# Three SRs geared towards different regions of **mSUGRA simplified model**



|                                   | 1                                                                         | 2                                                          | 3                 |  |
|-----------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|-------------------|--|
| $1\tau$ channel                   | Compressed SR                                                             | Medium-Mass SR                                             | High-Mass SR      |  |
| Trigger plateau                   | $E_{\rm T}^{\rm miss} >$                                                  | • 180 GeV, $p_{\rm T}^{\rm jet_1} > 12$                    | 0 GeV             |  |
| Tau leptons                       | $N_{\tau}^{\text{loose}} =$                                               | $N_{\tau}^{\text{medium}} = 1,  p_{\mathrm{T}}^{\tau} > 2$ | 20 GeV            |  |
| Light leptons                     |                                                                           | $N_{\ell} = 0$                                             |                   |  |
| Multi-jet rejection               | $\Delta \phi(\text{jet}_{1,2}, \vec{p}_{\text{T}}^{\text{miss}}) \ge 0.4$ |                                                            |                   |  |
| $p_{\mathrm{T}}^{	au}$            | $< 45 { m GeV}$                                                           | _                                                          | _                 |  |
| $p_{\mathrm{T}}^{\mathrm{jet_1}}$ | $> 300 { m ~GeV}$                                                         | _                                                          | $> 220 { m ~GeV}$ |  |
| $p_{\mathrm{T}}^{\mathrm{jet_2}}$ | _                                                                         | _                                                          | $> 220 { m ~GeV}$ |  |
| $N_{ m jet}$                      | $\geq 2$                                                                  | $\geq 5$                                                   | $\geq 5$          |  |
| $m_{\mathrm{T}}^{	au}$            | $> 80 { m ~GeV}$                                                          | $> 200 { m ~GeV}$                                          | $> 200 { m GeV}$  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$  | $> 300 { m ~GeV}$                                                         | $> 300 { m ~GeV}$                                          | _                 |  |
| $H_{\mathrm{T}}$                  | _                                                                         | $> 550 { m ~GeV}$                                          | $> 550 { m GeV}$  |  |

SR definition for single- $\tau$  analysis

#### Selection includes overall production scale observables:

- Transverse energy H<sub>T</sub> (sum of transverse energy of all reconstructed objects)
- Transverse mass m<sub>T</sub> (sum of H<sub>T</sub> and E<sub>t</sub><sup>miss</sup>)



m<sub>ž,</sub> [GeV]

#### Single-Tau Analysis continued... (3.2 fb<sup>-1</sup>)



Backgrounds from boson, top and multijet production estimated via control regions:

- Softening overall energy-scale requirements, requiring/vetoing b-quark jets enrich top/W-boson production
- Fake  $\tau$ 's indicated by high transverse mass of  $\tau$  candidate
- Multijet contributions enriched by lowering E<sub>t</sub><sup>miss</sup> requirement

#### Backgrounds determined by simultaneous fit to signal and control regions

| 1τ channe1        | Compressed SR   | Medium-Mass SR  | High-Mass SR    |
|-------------------|-----------------|-----------------|-----------------|
| Data              | 47              | 11              | 1               |
| Total background  | $49.2 \pm 6.2$  | $15.0 \pm 2.4$  | 5.7 ± 1.2       |
| Тор               | $14.3 \pm 4.5$  | $6.0 \pm 1.3$   | $2.49 \pm 0.87$ |
| $W(\tau v)$ +jets | $12.1 \pm 1.3$  | $2.78 \pm 0.62$ | $1.17 \pm 0.33$ |
| $Z(\nu\nu)$ +jets | $13.9 \pm 2.3$  | $3.8 \pm 1.1$   | $0.83 \pm 0.21$ |
| V+jets, other     | $6.24 \pm 0.90$ | $1.44 \pm 0.32$ | $0.75 \pm 0.23$ |
| Diboson           | $1.85 \pm 0.23$ | $0.76 \pm 0.16$ | $0.20 \pm 0.03$ |
| Multi-jet         | $0.74 \pm 0.54$ | $0.19 \pm 0.18$ | $0.24 \pm 0.17$ |

#### NB: Background estimation techniques common to all photonic and tau analyses

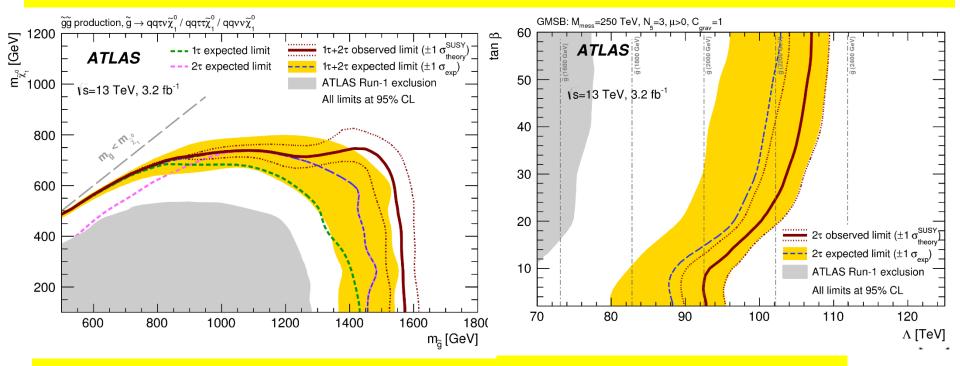




- 2 low-background multi-τ SRs geared towards mSUGRA model with high gluino mass and large mass gap
- 1 multi-τ SR geared towards
   GMSB model

| $2\tau$ channel                         | Compressed SR                                                                   | High-Mass SR     | GMSB SR     |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------|------------------|-------------|--|--|
| Trigger plateau                         | $E_{\rm T}^{\rm miss} > 180 {\rm GeV},  p_{\rm T}^{\rm jet_1} > 120 {\rm GeV}$  |                  |             |  |  |
| Tau leptons                             | $N_{\tau}^{\text{loose}} \ge 2,  p_{\mathrm{T}}^{\tau} > 20  \mathrm{GeV}$      |                  |             |  |  |
| Multi-jet rejection                     | $\Delta \phi(\mathrm{jet}_{1,2}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) \ge 0.4$ |                  |             |  |  |
| $m_{\rm T}^{	au_1} + m_{\rm T}^{	au_2}$ | _                                                                               | $> 350 { m GeV}$ | > 150  GeV  |  |  |
| $H_{\mathrm{T}}$                        | _                                                                               | $> 800 { m GeV}$ | > 1700  GeV |  |  |
| $N_{ m jet}$                            | $\geq 2$                                                                        | $\geq 3$         | $\geq 2$    |  |  |
| $m_{\mathrm{T2}}^{	au	au}$              | $> 60 { m GeV}$                                                                 | _                | _           |  |  |
| $m_{\mathrm{T}}^{\mathrm{sum}}$         | > 1400  GeV                                                                     | _                | _           |  |  |

| $2\tau$ channel     | Compressed SR              | High-Mass SR    | GMSB SR         |
|---------------------|----------------------------|-----------------|-----------------|
| Data                | 4                          | 0               | 0               |
| Total background    | $4.2 \pm 3.0$              | $3.2 \pm 1.2$   | $0.69 \pm 0.24$ |
| Тор                 | 2.5 <sup>+2.9</sup><br>2.5 | $0.87 \pm 0.78$ | $0.20 \pm 0.20$ |
| $W(\tau v)$ +jets   | $0.51 \pm 0.38$            | $1.75 \pm 0.65$ | $0.31 \pm 0.14$ |
| $Z(\tau\tau)$ +jets | $0.04 \pm 0.02$            | $0.13 \pm 0.06$ | $0.04 \pm 0.02$ |
| $Z(\nu\nu)$ +jets   | $0.28 \pm 0.12$            | $0.07 \pm 0.03$ | $0.02 \pm 0.01$ |
| $W(\ell v)$ +jets   | $0.37 \pm 0.34$            | $0.12 \pm 0.07$ | $0.02 \pm 0.01$ |
| Diboson             | $0.25 \pm 0.10$            | $0.21 \pm 0.08$ | $0.06 \pm 0.02$ |
| Multi-jet           | $0.21 \pm 0.21$            | $0.07 \pm 0.07$ | $0.06 \pm 0.06$ |




#### Model-Dependent Limits for Tau Analyses (3.2 fb<sup>-1</sup>



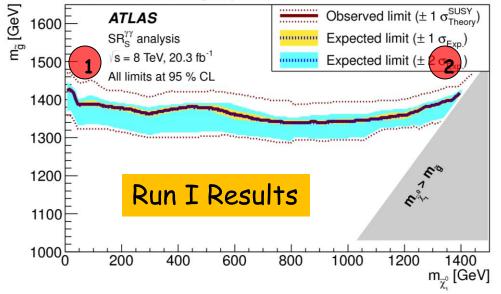
These results can be used to set limits on the two tau-analysis models

- mSUGRA-inspired  $\chi_1^0$ -gluino mass plane (5 SRs combined)
- GMSB tan $\beta$ - $\Lambda$  plane (single GMSB SR)



Limits as high as 1570 GeV set on gluino mass in this context




ICHEP 2016: SUSY with Photons and Taus

http://arxiv.org/abs/1607.05979

#### Diphoton + E<sup>miss</sup> Analysis (3.2 fb<sup>-1</sup>)



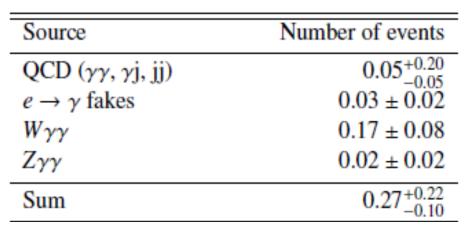
GGM: bino-like neutralino, gluino production



#### $(m_g, m_{\chi})$ focus points for optimization:

- (1500, 100) for low-mass  $\chi_1^0$  (1)
- (1500,1300) for high-mass  $\chi_1^0$  (2)

No significant difference found for optimal selection for 3 fb<sup>-1</sup> at 13 TeV


→ single diphoton+Et<sup>miss</sup> SR

| $p_{\rm T}^{\gamma}$ [GeV] | $E_{\rm T}^{\rm miss}$ [GeV] | Meff [GeV] | $\Delta \phi_{\min}(\text{jet}, E_{T}^{\text{miss}})$ | $\Delta \phi_{\min}(\gamma, E_{T}^{\min})$ |
|----------------------------|------------------------------|------------|-------------------------------------------------------|--------------------------------------------|
| 75                         | 175                          | 1500       | 0.5                                                   | 0.0                                        |
|                            |                              |            |                                                       |                                            |

Significant requirements only on  $E_t^{miss}$  and transverse mass scale  $M_{eff}$  $\rightarrow$  fully efficient even for  $m_{bino} \rightarrow m_{gluino}$  and  $m_{bino} \rightarrow 0$ 



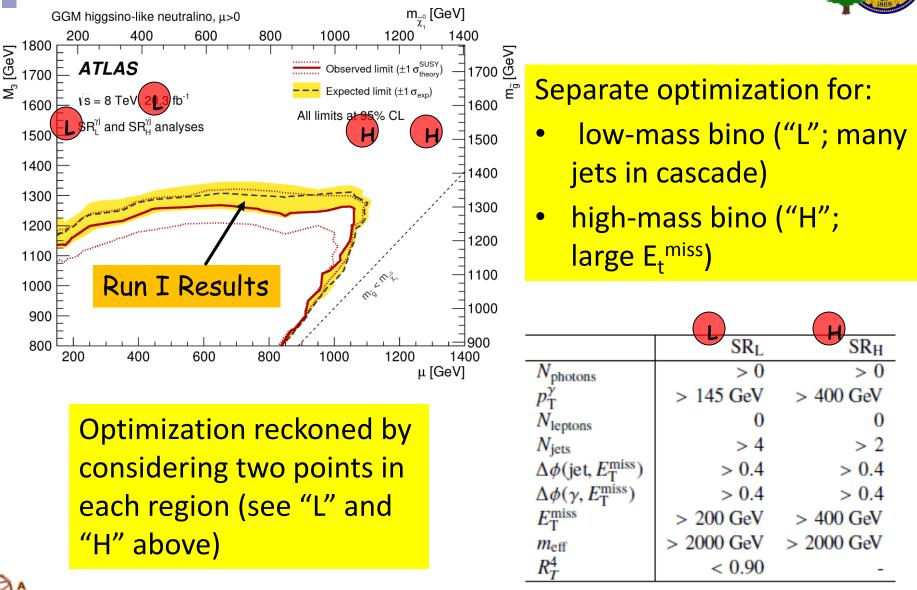
#### Diphoton + Et<sup>miss</sup> Results (3.2 fb<sup>-1</sup>)



 $\tilde{g}$ - $\tilde{g}$  production,  $\tilde{g} \rightarrow qq \tilde{\chi}_{\downarrow}^{0} \rightarrow qq (\gamma/Z) \tilde{G}$  (GGM),  $\gamma \gamma + E_{\tau}^{miss}$  final state

Optimization calls for demanding requirements on E<sub>t</sub><sup>miss</sup> and M<sub>eff</sub> leaving little background

3000 Observed limit (±1  $\sigma_{\text{theory}}^{\text{SUSY}}$ ) ATLAS . . . . . . . . . . . . . . . . Expected limit (±1  $\sigma_{exp}$ ) L = 3.2 fb<sup>-1</sup>, s=13 TeV Excluded at L=20.3 fb<sup>-1</sup>, vs=8 TeV 2000 1500 **No Events** Observed 1000 in SR 500 0 1200 1400 1600 1800 2000 2200 m<sub>ã</sub> [GeV]


Gluino mass limits (for case of purely bino-like NLSP) in range of 1600-1750 GeV

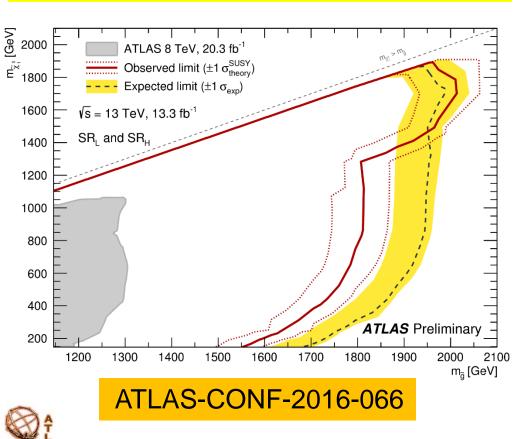
> https://arxiv.org/pdf/ 1606.09150.pdf





#### Photon + Jets Analysis (13.3 fb<sup>-1</sup>)






Photon + Jets Results (13.3 fb<sup>-1</sup>) PRELIMINARY



#### FIRST PUBLIC PRESENTATION

# Observation of 3 events (SR<sub>L</sub>) when 0.78 $\pm$ 0.18 are expected is 2% likely.



| Signal Region                              | $\mathrm{SR}_{\mathrm{L}}$ | $\mathrm{SR}_\mathrm{H}$ |
|--------------------------------------------|----------------------------|--------------------------|
| Observed events                            | 3                          | 1                        |
| Expected SM events                         | $0.78\pm0.18$              | $1.49\pm0.45$            |
| $\gamma$ + jet                             | $0.18\pm0.11$              | $0.70\pm0.24$            |
| $W + \gamma$                               | $0.30\pm0.07$              | $0.37 \pm 0.09$          |
| $Z + \gamma$                               | $0.08\pm0.08$              | $0.32\pm0.32$            |
| $t\bar{t} + \gamma$                        | $0.10\pm0.04$              | $0.03\pm0.01$            |
| $e \to \gamma$ fakes                       | $0.07\pm0.03$              | $0.00\pm0.00$            |
| $j \to \gamma$ fakes                       | $0.04\pm0.01$              | $0.00\pm0.00$            |
| $\gamma\gamma/W\gamma\gamma/Z\gamma\gamma$ | $0.01\pm0.00$              | $0.07\pm0.01$            |

Combined-SR gluino mass limits (for case of higgsino/bino NLSP with 50/50 γ/Z branching) as high as 2 TeV



#### **Summary and Conclusions**



- We have searched for evidence of SUSY in association with photons and tau leptons in 3-13 fb<sup>-1</sup> of 13 TeV ATLAS data
- Five tau-leptonic and three photonic SRs were developed to maximize sensitivity to simplified strong-production models of gauge-mediated and gravity-mediated SUSY breaking. No significant excess relative to expected SM backgrounds was observed for any of these eight SRs.
- In the context of these simplified models, limits set on the mass of the gluino are as high as 2 TeV.
- Due to the requirement of a high transverse energy scale and associated jets, these eight SRs were insensitive to EW production; the development of simplified-model SRs sensitive to EW production at 13 TeV is underway.
- A sixth tau-leptonic SR was optimized to search for evidence for a specific model of gauge-mediated SUSY (GMSB), sensitive to both strong and EW production in a constrained scenario.
- No excess was observed in this ninth SR, and limits were set in the  $\Lambda$ -tanß parameter space of GMSB.







# Back-Up



ICHEP 2016: SUSY with Photons and Taus

#### mSUGRA-Inspired Model

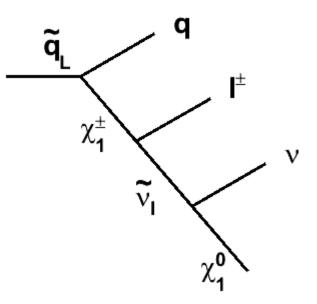
**Bruce Schumm** 

|                                                              | Sim               | plified Model S                                                         | Rs                                                                        |                                                                                  |                |                               |                                                                     | 186                            |
|--------------------------------------------------------------|-------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------|-------------------------------|---------------------------------------------------------------------|--------------------------------|
|                                                              | Compressed        | Medium- $\Delta m$                                                      | Large- $\Delta m$                                                         |                                                                                  |                |                               |                                                                     |                                |
| Trigger selection                                            |                   | $r_T^{jetl} > 120 \text{ GeV}$<br>$r_T^{miss} > 180 \text{ GeV}$        |                                                                           |                                                                                  |                |                               |                                                                     |                                |
| Taus                                                         |                   | $N_{\tau}^{\text{medium}} = 1$<br>$p_{\text{T}} > 20 \text{ GeV}$       |                                                                           |                                                                                  |                | Sime                          | lified Model SRs                                                    | GMSB SR                        |
| Light leptons                                                | Ν                 | $\ell^{\text{base line}} = 0$                                           |                                                                           |                                                                                  |                | High Mass                     | $\sum m_T^{\text{jets}} + \sum m_T^{\text{taus}}$ -based            | UM3D 3K                        |
| Multijet rejection<br>Signal selection                       | Δφ                | $(jet_{1,2}, p_T^{miss}) \ge 0$                                         | ).4                                                                       | Trigger select                                                                   | tion           |                               | $p_T^{jetl} > 120 \text{ GeV}$<br>$E_T^{miss} > 180 \text{ GeV}$    |                                |
| $p_{T}^{r}$                                                  | gg production, g- | + qqtvý <sup>0</sup> / qqttý <sup>0</sup> / qqvvý                       | °, m <sub>2</sub> = m <sub>2</sub> = (m <sub>3</sub> +m <sub>2</sub> )/2. | Taus<br>, m <sub>y</sub> = m <sub>y</sub> = (m <sub>y</sub> ,+m <sub>y</sub> )/2 | 2              |                               | $N_{\tau}^{\text{loose}} \ge 2$<br>$p_{\text{T}} > 20 \text{ GeV}$  |                                |
| $p_{T}^{jet1}$ $\tilde{s}_{T}^{jet2}$ $\tilde{s}_{T}^{jet2}$ | 900               | and a second                                                            | - <del>611-616</del>                                                      | 82 grid poli<br>20k events per                                                   | nts<br>r point | ≥ 350 GeV                     | $\Delta \phi(\text{jet}_{1,2}, p_{\text{T}}^{\text{miss}}) \ge 0.4$ | ≥ 150 GeV                      |
| mT<br>ET                                                     | 700               |                                                                         | 0 0 0                                                                     |                                                                                  |                | ≥ 350 GeV<br>≥ 800 GeV<br>≥ 3 | -<br>≥ 2                                                            | ≥ 150 GeV<br>≥ 1700 GeV<br>≥ 2 |
| H <sub>T</sub>                                               | 600 - M           |                                                                         | • • •<br>• • • •                                                          |                                                                                  | 7              | -                             | > 60 GeV                                                            | -                              |
| Njet                                                         |                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                                           |                                                                                  |                | -                             | > 1400 GeV                                                          | _                              |
| A<br>T                                                       |                   |                                                                         |                                                                           | m <sub>g</sub> [Ge                                                               | eV]            |                               |                                                                     |                                |



ICHEP 2016: SUSY with Photons and Taus

#### **R** Parity




To avoid lepton/baryon number violation can require that "SUSYness" is conserved, i.e., preserves a multiplicative "parity" quantum number R such that  $R_{SM} = +1$ ;  $R_{SUSY} = -1$ 

If you can't get rid of SUSYness, then lightest supersymmetric particle (LSP) is stable

 $\rightarrow$  dark matter, missing energy ( $E_T^{miss}$ )

LSP is typically a "neutralino" (dark matter must be neutral); admixture of  $\tilde{W}^0, \tilde{B}^0, \tilde{H}^0, \tilde{H}^0,$ 



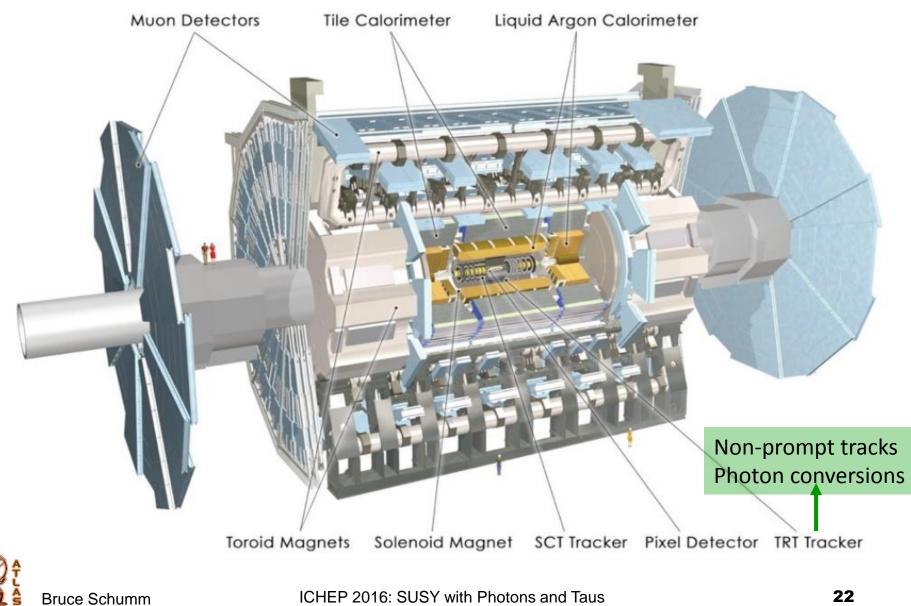
#### Tau + X Search



#### Baseline requirement (all SRs): $E_t^{miss} > 180 \text{ GeV}$ ; leading jet $p_T > 120 \text{ GeV}$

3 single- $\tau$  SRs geared towards mSUGRA model with varying mass gap between gluino and  $\chi_1^{0}$ .

|                        | Simplified Model SRs                                                           |                                                                   |                        |  |  |  |
|------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------|--|--|--|
|                        | Compressed                                                                     | Large- $\Delta m$                                                 |                        |  |  |  |
| Trigger selection      | $p_T^{\text{jetl}} > 120 \text{ GeV}$<br>$E_T^{\text{miss}} > 180 \text{ GeV}$ |                                                                   |                        |  |  |  |
| Taus                   |                                                                                | $N_{\tau}^{\text{medium}} = 1$<br>$p_{\text{T}} > 20 \text{ GeV}$ |                        |  |  |  |
| Light leptons          | Λ                                                                              | $\ell_{\ell}^{\text{baseline}} = 0$                               |                        |  |  |  |
| Multijet rejection     | $\Delta \phi(\text{jet}_{1,2}, p_T^{\text{miss}}) \ge 0.4$                     |                                                                   |                        |  |  |  |
| Signal selection       |                                                                                |                                                                   |                        |  |  |  |
| $p_{T}^{\tau}$         | < 45 GeV                                                                       | -                                                                 | -                      |  |  |  |
| $p_{T}^{jetl}$         | $\geq 300  \text{GeV}$                                                         | -                                                                 | $\geq 220  \text{GeV}$ |  |  |  |
| $p_{\rm T}^{\rm jet2}$ | ≥ 220 GeV                                                                      |                                                                   |                        |  |  |  |
| mr                     | $\geq 80  \text{GeV}$                                                          | $\geq 200  { m GeV}$                                              | $\geq 200  \text{GeV}$ |  |  |  |
| $E_{\rm T}^{\rm miss}$ | ≥ 300 GeV ≥ 300 GeV -                                                          |                                                                   |                        |  |  |  |
| $H_{\mathrm{T}}$       | -                                                                              | $\geq 550  \text{GeV}$                                            | $\geq 550 \text{ GeV}$ |  |  |  |
| Njet                   | -                                                                              | ≥ 5                                                               | ≥ 5                    |  |  |  |


2 low-background multi-τ SRs for mSUGRA
 with high gluino mass and large mass gap;
 1 multi-τ SR geared towards GMSB

|                                                                             | Simp                       | lified Model SRs                                                                   | GMSB SR                |  |  |
|-----------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------|------------------------|--|--|
|                                                                             | High Mass                  | $\sum m_{\mathrm{T}}^{\mathrm{jets}} + \sum m_{\mathrm{T}}^{\mathrm{taus}}$ -based |                        |  |  |
| Trigger selection                                                           |                            | $p_{T}^{\text{jet1}} > 120 \text{ GeV}$<br>$E_{T}^{\text{miss}} > 180 \text{ GeV}$ |                        |  |  |
| Taus                                                                        |                            | $N_{\tau}^{\text{loose}} \ge 2$                                                    |                        |  |  |
|                                                                             |                            | $p_{\rm T} > 20 { m GeV}$                                                          |                        |  |  |
| Multijet rejection                                                          |                            | $\Delta \phi(\text{jet}_{1,2}, p_{\text{T}}^{\text{miss}}) \ge 0.4$                |                        |  |  |
| Signal selection                                                            |                            |                                                                                    |                        |  |  |
| $m_{\rm T}^{	au_1} + m_{\rm T}^{	au_2}$                                     | $\geq 350\text{GeV}$       | -                                                                                  | $\geq 150  \text{GeV}$ |  |  |
| $H_{\mathrm{T}}$                                                            | $\geq 800{\rm GeV}$        | -                                                                                  | $\geq 1700\text{GeV}$  |  |  |
| Njet                                                                        | $\geq 3$ $\geq 2$ $\geq 2$ |                                                                                    |                        |  |  |
| mT2                                                                         | -                          | > 60 GeV                                                                           | -                      |  |  |
| $\sum m_{\mathrm{T}}^{\mathrm{jets}} + \sum m_{\mathrm{T}}^{\mathrm{taus}}$ | -                          | > 1400 GeV                                                                         | -                      |  |  |



#### **The ATLAS Detector**





#### **Favorite Discriminating Variables**



- E<sub>T</sub><sup>miss</sup>: Transverse momentum imbalance
   ➢ LSP escapes detection (RP conserving SUSY)
- **M**<sub>eff</sub>, **H**<sub>T</sub>, etc: Transverse energy scale
  - > Strong production can reach high mass scales
  - "Scale chasing"
- $\Delta \phi_{X}$ : Minimum  $\phi$  separation between  $E_{T}^{miss}$  vector and any object of type X.
  - LSP produced in intermediate-to-high mass decay
  - Separation between LSP and decay sibling
  - Jet backgrounds tend to have small separation (combinatoric)

Heavy Flavor: "Natural" preference for 3<sup>rd</sup> generation
▶ b jets, τ jets

