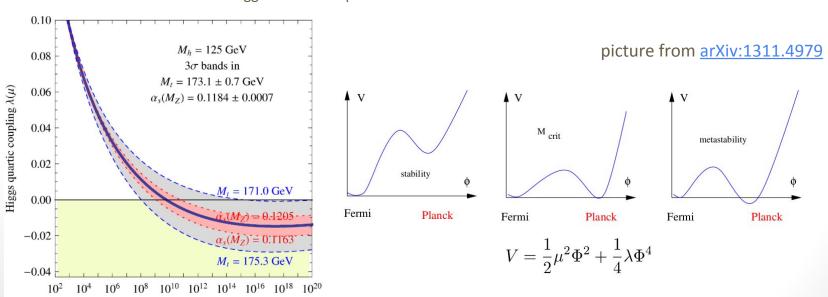


Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)


Top Quark Mass Measurements with the ATLAS Detector

Andreas Wildauer on behalf of the ATLAS Collaboration

Max-Planck Institut für Physik München 38th ICHEP August 3 - 10, 2016 Chicago

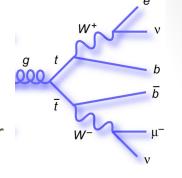
Top Quark Physics - Introduction

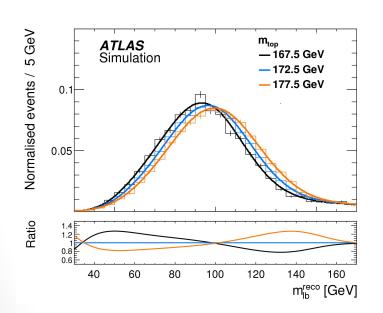
- The top quark is the heaviest known fundamental building block
- Its mass is a free fundamental parameter of the Standard Model (SM)
- World combination 2014 of Tevatron and LHC data
 - $m_{top} = 173.34 \pm 0.27 \text{ (stat)} \pm 0.71 \text{ (syst)} \text{ GeV, total: } 0.6\% \text{ (} \frac{\text{arXiv:} 1403.4427}{\text{)}}$
- m_{top} is an important ingredient for the consistency of the SM
 - especially in conjunction with the mass of the Higgs Boson
 - a low m_{Higgs} around 125-130 GeV leads to a stable vacuum if the Higgs quartic coupling $\mathring{\Lambda}$ is small at the Planck scale (~10¹⁹ GeV)
 - it depends on m_{Higgs} and m_{top} at which scale $\tilde{\lambda}$ becomes small (or negative)

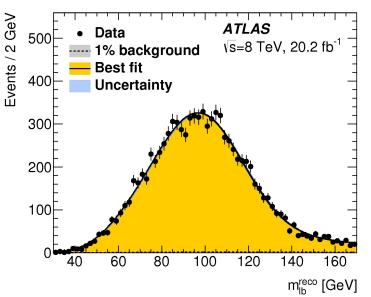
JHEP 1208 (2012) 098

RGE scale μ in GeV

Top Quark Mass - Direct Measurements


- In ATLAS, direct measurements of the top quark are all performed with the template method
- Choose a reconstructible quantity which depends on the top quark mass
 - this is the estimator for the top quark mass measurements
- Construct templates (histograms) with the estimator at various Monte
 Carlo (MC) input top quark mass values
- Fit the templates with suitable functions (gauss, landau, novosibirsk, ...)
- Linearize the parameters of these functions (gauss mean, width, ...) as a function of the Monte Carlo input top mass
- Perform a combined log likelihood fit to the distribution of the estimator in data and extract the top quark mass


- The measured mass is the one defined in the MC generator
- Its exact theoretical definition is not yet defined
 - expected to be close to the pole mass (within about 1 GeV)

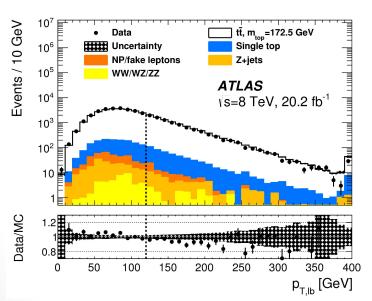

Dilepton channel at 8 TeV

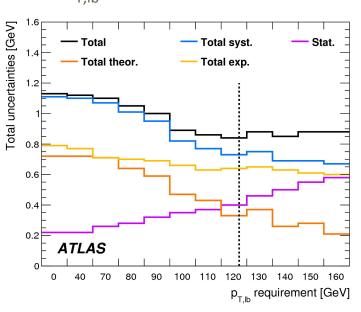
arXiv:1606.02179

- Low branching ratio ~4%, very clean: background <1%
- Select events where both W's decay leptonical (e ν or $\mu\nu$)
 - Underconstrained final state due to 2 neutrinos
- Partially reconstruct final state and use invariant mass of lepton-b-jet pairs (m_{Ib}) as top quark mass dependent estimator

 $m_{\text{top}} = 172.99 \pm 0.41 \text{ (stat)} \pm 0.74 \text{ (syst) GeV}$

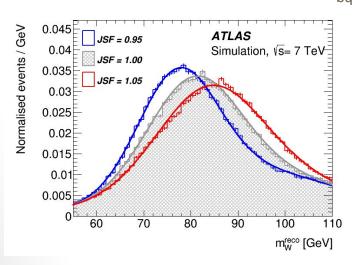
Total Uncertainty: ± 0.84 GeV (0.48%)

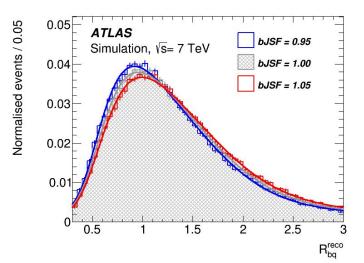

Also measured at E_{cm} = 7 TeV: <u>Eur. Phys. J. C (2015) 75:330</u>


5

Dilepton channel at 8 TeV

- Optimization of systematic (and statistical) uncertainties
- An additional cut on a minimal average p_{T,lb} of the two lepton—b-jet pairs
 - increases the fraction of correctly reconstructed top quark pairs
 - reduces the number of unmatched or wrongly reconstructed pairs
- A cleaner event reconstruction leads to reduced systematic uncertainties
 - Minimize total uncertainty by scanning the $p_{T,lb}$ cut



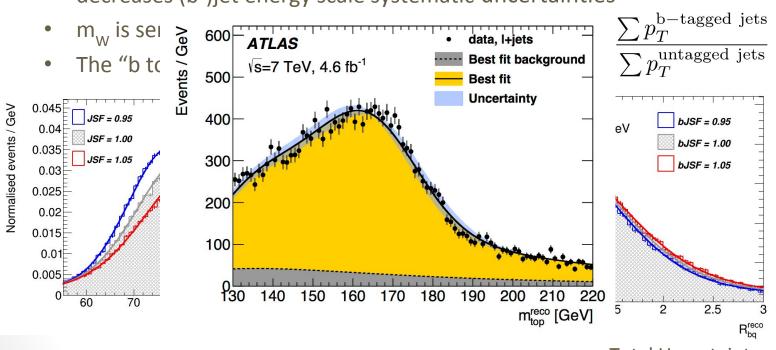

- Most precise measurement in the dilepton channel to date
- Largest uncertainties from (b-)jet energy scales
 - 0.54 and 0.30 GeV

Lepton + jets channel at 7 TeV Eur. Phys. J. C (2015) 75:330

- Branching ratio ~30%, clean with background O(few %)
- Select events where one W decays leptonically (ev or $\mu\nu$)
- Fully reconstruct final state and apply a 3D template method with m_{top} , m_W and R_{ba} as estimators
- In addition to top quark mass, determine a (b-)jet scale factor (JSF)
 - decreases (b-)jet energy scale systematic uncertainties
 - m_w is sensitive estimator to determine JSF
 - The "b to light jet ratio" R_{bq} is used for bJSF

$$R_{bq}^{
m reco} = rac{\sum p_T^{
m b-tagged\ jets}}{\sum p_T^{
m untagged\ jets}}$$

$$m_{\text{top}}^{\ell + \text{jets}} = 172.33 \pm 0.75 \text{ (stat + JSF + bJSF)} \pm 1.02 \text{ (syst) GeV}$$


Total Uncertainty: ± 1.26 GeV (0.73%)

Uncertainties from (b-)jet energy scales: 0.58 and 0.06 GeV

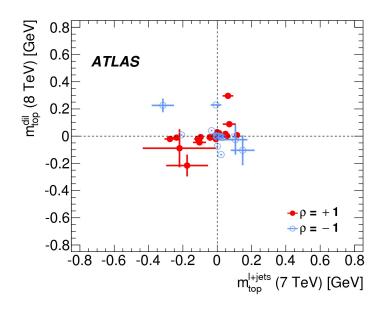
6

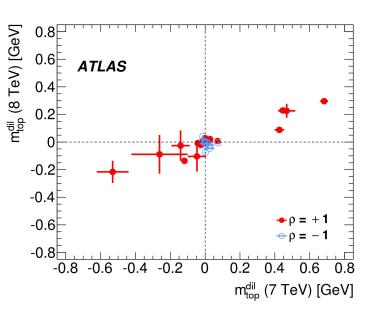
Lepton + jets channel at 7 TeV Eur. Phys. J. C (2015) 75:330

- Branching ratio ~30%, clean with background O(few %)
- Select events where one W decays leptonically (ev or $\mu\nu$)
- Fully reconstruct final state and apply a 3D template method with m_{top} , m_W and R_{bq} as top quark mass dependent estimators
- In addition to top quark mass, determine a (b-)jet scale factor (JSF)
 - decreases (b-)jet energy scale systematic uncertainties

 $m_{\text{top}}^{\ell + \text{jets}} = 172.33 \pm 0.75 \text{ (stat + JSF + bJSF)} \pm 1.02 \text{ (syst) GeV}$

Uncertainties from (b-)jet energy scales: 0.58 and 0.06 GeV


Total Uncertainty: ± 1.26 GeV (0.73%)


Combination 2016

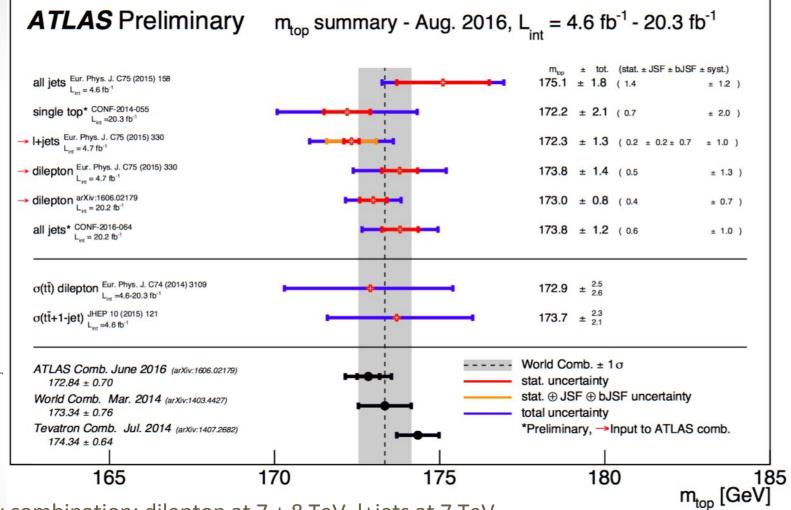
arXiv:1606.02179

- Top quark mass measurements in the dilepton channel at $E_{cm} = 7-8$ TeV and the lepton+jets channel at $E_{cm} = 7$ TeV have been combined
- Combination is performed using the "Best Linear Unbiased Estimate" (BLUE) method - webpage

- The uncertainty components determine the corresponding correlation between the impact on the measurements (± 1)
- Dilepton and lepton + jets analyses use different methods
 - this leads to smaller correlations compared to dilepton at E_{cm} = 7 and 8 TeV which use identical methods

Combination 2016

- Table shows the single input measurements, the determined correlations per uncertainty component and the result of the respective combinations
- Combinations:


dilepton and lepton+jets at 7 TeV;
 dilepton at 7 and 8 TeV; all

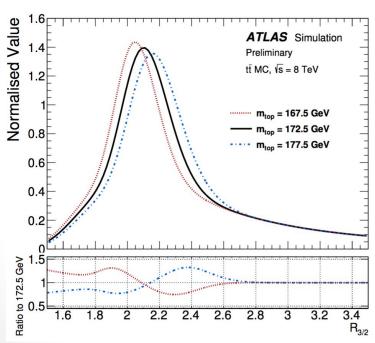
	$\sqrt{s} = 7 \text{ TeV}$		$\sqrt{s} = 8 \text{ TeV}$	Correlations		Combinations			
	$m_{\rm top}^{\ell+{ m jets}}$ [GeV]	$m_{ m top}^{ m dil}~{ m [GeV]}$	$m_{ m top}^{ m dil}~{ m [GeV]}$	$ ho_{01}$	$ ho_{02}$	$ ho_{12}$	$m_{ m top}^{7~{ m TeV}}~{ m [GeV]}$	$m_{ m top}^{ m dil}~{ m [GeV]}$	$m_{ m top}^{ m all} \ [{ m GeV}]$
Results	172.33	173.79	172.99				172.99	173.04	172.84
Statistics	0.75	0.54	0.41	0	0	0	0.48	0.38	0.34
Method	0.11 ± 0.10	0.09 ± 0.07	0.05 ± 0.07	0	0	0	0.07	0.05	0.05
Signal Monte Carlo generator	0.22 ± 0.21	0.26 ± 0.16	0.09 ± 0.14	+1.00	+1.00	+1.00	0.24	0.10	0.14
Hadronisation	0.18 ± 0.12	0.53 ± 0.09	0.22 ± 0.08	+1.00	+1.00	+1.00	0.34	0.24	0.23
Initial- and final-state QCD radiation	0.32 ± 0.06	0.47 ± 0.05	0.23 ± 0.05	-1.00	-1.00	+1.00	0.04	0.24	0.08
Underlying event	0.15 ± 0.07	0.05 ± 0.05	0.10 ± 0.11	-1.00	-1.00	+1.00	0.06	0.10	0.02
Colour reconnection	0.11 ± 0.07	0.14 ± 0.05	0.03 ± 0.11	-1.00	-1.00	+1.00	0.01	0.03	0.01
Parton distribution function	0.25 ± 0.00	0.11 ± 0.00	0.05 ± 0.00	+0.57	-0.29	+0.03	0.17	0.04	0.08
Background normalisation	0.10 ± 0.00	0.04 ± 0.00	0.03 ± 0.00	+1.00	+0.23	+0.23	0.07	0.03	0.04
W/Z+jets shape	0.29 ± 0.00	0.00 ± 0.00	0	0			0.16	0.00	0.09
Fake leptons shape	0.05 ± 0.00	0.01 ± 0.00	0.08 ± 0.00	+0.23	+0.20	-0.08	0.03	0.07	0.05
Jet energy scale	0.58 ± 0.11	0.75 ± 0.08	0.54 ± 0.04	-0.23	+0.06	+0.35	0.41	0.52	0.41
Relative b-to-light-jet energy scale	0.06 ± 0.03	0.68 ± 0.02	0.30 ± 0.01	+1.00	+1.00	+1.00	0.34	0.32	0.25
Jet energy resolution	0.22 ± 0.11	0.19 ± 0.04	0.09 ± 0.03	-1.00	0	0	0.03	0.08	0.08
Jet reconstruction efficiency	0.12 ± 0.00	0.07 ± 0.00	0.01 ± 0.00	+1.00	+1.00	+1.00	0.10	0.01	0.04
Jet vertex fraction	0.01 ± 0.00	0.00 ± 0.00	0.02 ± 0.00	-1.00	+1.00	-1.00	0.00	0.02	0.02
b-tagging	0.50 ± 0.00	0.07 ± 0.00	0.03 ± 0.02	-0.77	0	0	0.25	0.03	0.15
Leptons	0.04 ± 0.00	0.13 ± 0.00	0.14 ± 0.00	-0.34	-0.52	+0.96	0.05	0.14	0.09
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.04 ± 0.03	0.01 ± 0.01	-0.15	+0.25	-0.24	0.08	0.01	0.05
Pile-up	0.02 ± 0.01	0.01 ± 0.00	0.05 ± 0.01	0	0	0	0.01	0.05	0.03
Total systematic uncertainty	1.03 ± 0.31	1.31 ± 0.23	0.74 ± 0.25				0.77	0.74	0.61
Total	1.27 ± 0.33	1.41 ± 0.24	0.84 ± 0.25	-0.07	0.00	0.51	0.91	0.84	0.70

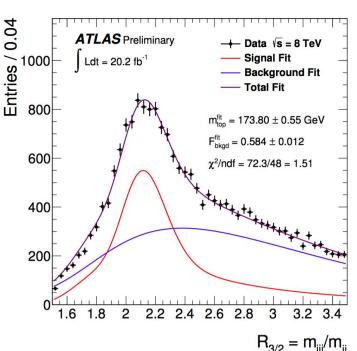
combination: successive reduction of total uncertainty

Combination - Summary

New combination: dilepton at 7 + 8 TeV, I+jets at 7 TeV

$$m_{\text{top}} = 172.84 \pm 0.34 \text{ (stat)} \pm 0.61 \text{ (syst) GeV}$$


Total Uncertainty: ± 0.70 GeV (0.40%)

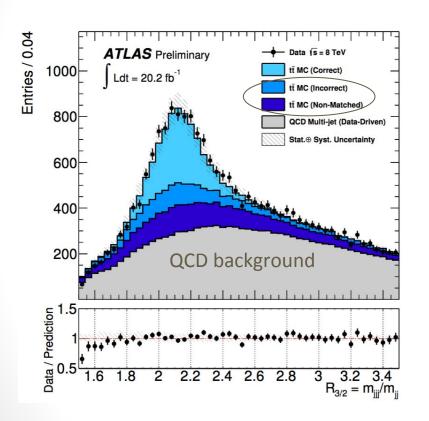

NEV

000

All hadronic channel at 8 TeV

- High branching ratio 46%, very large QCD initiated background: ~50%
 - Large background is estimated from data (ABCD method)
- Select events where both W's decay hadronically
 - The final state can be fully reconstructed
- Use $R_{3/2} = m_{ijj}/m_{ij}$ as top quark mass dependent estimator
 - ratio reduces depence on jet energy calibration

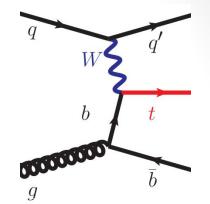
 $m_{top} = 173.80 \pm 0.55 \text{ (stat.)} \pm 1.01 \text{ (syst.)} \text{ GeV}$


Total Uncertainty: ± 1.15 GeV (0.7%)

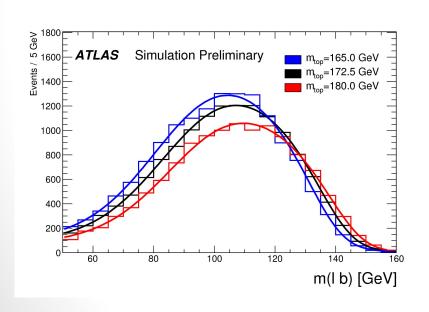
11

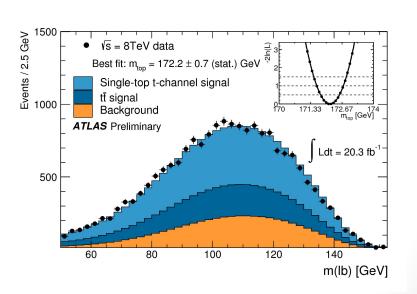
All hadronic channel at 8 TeV

- Six jets in final state \rightarrow combinatorial bkg. due to wrong jet parton assignment
 - Reduce combinatorial background by computing m_{jj} and m_{jjj} for all permutations and minimising a χ^2 function


Uncertainty	Δm_{top} [GeV]
Monte Carlo Generator	0.18 ± 0.21
Hadronisation Modelling	0.64 ± 0.15
Parton Distribution Functions	0.04 ± 0.00
Initial/Final-State Radiation	0.10 ± 0.28
Underlying Event	0.13 ± 0.16
Colour Reconnection	0.12 ± 0.16
Template Method Non-Closure	0.06
Signal and Bkgd Parameterisation	0.09
Non All-Hadronic $t\bar{t}$ Contribution	0.06
ABCD vs. ABCDEF	0.16
Trigger Efficiency	0.08 ± 0.01
Pile-Up Reweighting	0.01 ± 0.00
Lepton/ $E_{\rm T}^{\rm miss}$ Calibration	0.02 ± 0.01
Overall Flavour Tagging	0.10 ± 0.00
Jet Energy Scale (JES)	0.60 ± 0.05
b-Jet Energy Scale (bJES)	0.34 ± 0.02
Jet Energy Resolution	0.10 ± 0.04
Jet Vertex Fraction	0.03 ± 0.01
Jet Reconstruction Efficiency	0.00 ± 0.00
Total Systematic	1.01
Total Statistical	0.55
Total	1.15

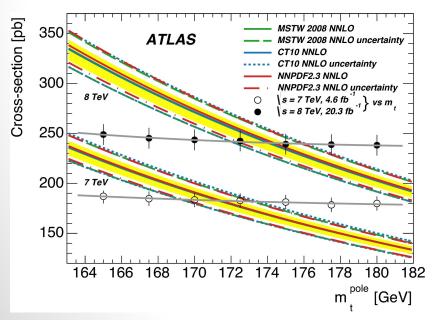
Largest uncertainties due to jet energy scale and hadronisation

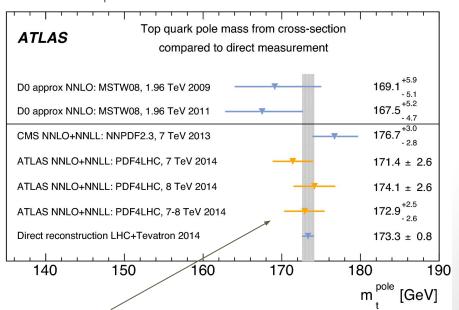

12


Single Top t-channel at 8 TeV

- Use single top t-channel to measure top quark mass
- Select events where W decays leptonically (ev or $\mu\nu$)
- Main background from top pair production and W + jets
 - Reduce background to <30% by use of neural network
- Use invariant mass of lepton b-jet system as estimator
- Largest uncertainty from
 - jet energy calibration: 1.5 GeV, hadronisation: 0.7 GeV

ATLAS-CONF-2014-055



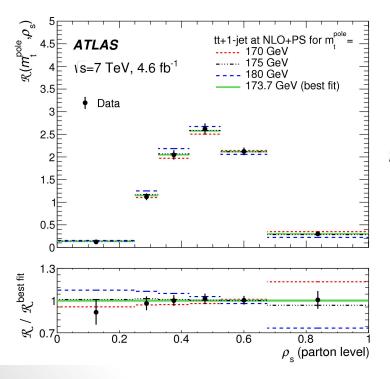

 $m_{\text{top}} = 172.2 \pm 0.7 \text{ (stat.)} \pm 2.0 \text{ (syst.)} \text{ GeV}$

Total Uncertainty: ± 2.12 GeV (1.2%)

Top Quark Pole Mass via Cross Section

- The top quark pair production cross section depends on the top quark pole mass: $\sigma_{tt}(m_{t,pole})$
- Eur.Phys.J. C74 (2014) 3109
- measure the cross section and extract the mass
- σ is measured in dilepton final state with opposite-charge eμ pairs
- Largest systematic uncertainties due to
 - particle distribution function: 1.7 GeV
 - baseline PDF is CT10, with PDF4LHC approach to derive systematic unc.
 - uncertainty could be reduced by using more recent PDF sets
 - uncertainty on integrated luminosity itself: 1.8% (2.8%) at $E_{cm} = 7$ (8) TeV
 - leads to 0.7 (1.2) GeV uncertainty on m_{ton} at $E_{cm} = 7$ (8) TeV

error bars include statistical and systematic errors


Top Quark Pole Mass - tt + 1 jet

JHEP 10 (2015) 121

- Select top quark pair events in the lepton + jets channel
- Study events of top quark pairs with at least one additional jet
- Normalized differential cross section of tt + 1 jet system

$$\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1-\text{jet}}} \frac{d\sigma_{t\bar{t}+1-\text{jet}}}{d\rho_s} (m_t^{\text{pole}}, \rho_s) \qquad \qquad \rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}+1-\text{jet}}}}$$

is sensitive to top quark pole mass

Largest uncertainties from

Statistical: 1.50 GeV

Jet energy scale: 0.96 GeV

Theory (scale variation, PDF): 0.5 - 1.0 GeV

$$m_t^{\text{pole}} = 173.7 \pm 1.5 \text{ (stat.)} \pm 1.4 \text{ (syst.)}_{-0.5}^{+1.0} \text{ (theory) GeV}$$

Total Uncertainty:

± 2.1 GeV (2.7%)

Measurement is currently repeated at E_{cm} = 8 TeV

Summary and Outlook

- The top quark mass is a free parameter of the Standard Model
- Precise measurements of the top quark mass are of great importance for theoretical predictions in conjuntion with the Higgs Boson and beyond
- ATLAS has measured the mass at E_{cm} = 8 TeV
 - directly in the dilepton and all hadronic top quark pair production channels
 - directly in the single top t-channel
 - indirectly via cross section measurements
- At E_{cm} = 7 TeV, the top quark mass has been measured in all top quark pair production channels and via cross section measurements
- A few more analyses using Run 1 data are in preparation
- The ATLAS collaboration will continue to perform precise measurements of the top quark mass at $E_{cm} = 13 \text{ TeV}$