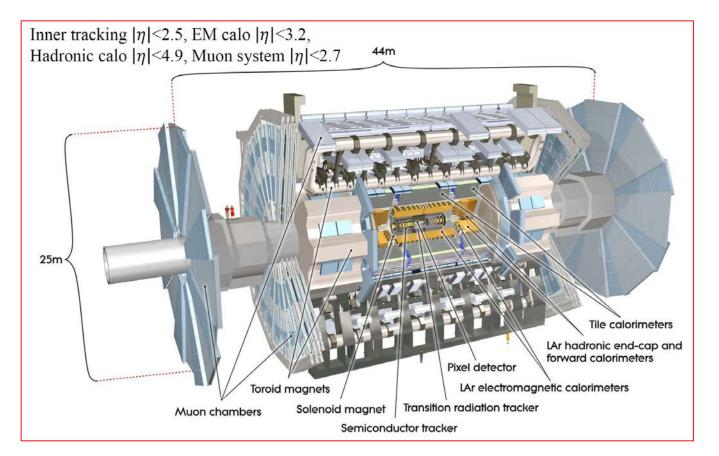

Measurement of the ZZ(*) and Zγ production cross section at 8 TeV and 13 TeV and limits on anomalous triple gauge couplings with the ATLAS detector


Bing Zhou (the University of Michigan)

On behalf of the ATLAS Collaboration, ICHEP at Chicago (Aug. 5, 2016)

ZZ and Zy Physics and Measurements in ATLAS

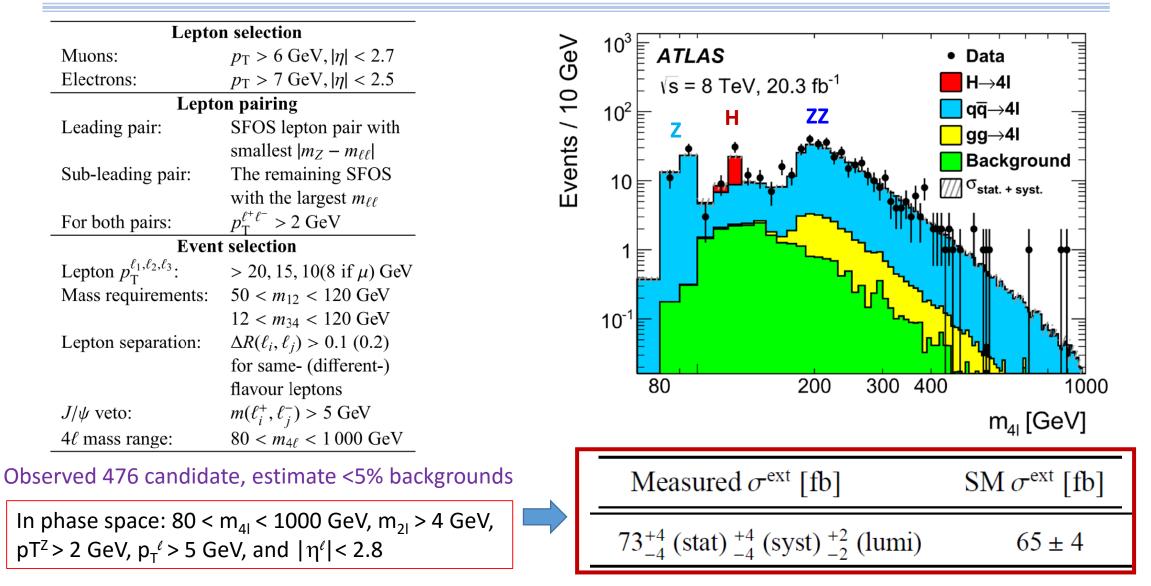
Test SM at energy frontier; search for new physics with anomalous triple-gauge couplings

- ZZ, Zγ (7TeV, L = 4.6 fb⁻¹):
- Phys.Rev. D87 (2013) no.11, 112003
- JHEP 1303 (2013) 128
- > ATLAS-CONF-2016-036
- ZZ, Zγ (8TeV, L = 20.3 fb⁻¹):
- Phys. Rev. D93 (2016) no.11, 112002
- Phys. Lett. B753 (2016) 552-572
- ATLAS-CONF-2013-020 (paper to be submitted to JHEP)
- ZZ (13 TeV, L = 3.2 fb⁻¹)
- Phys.Rev.Lett. 116 (2016) no.10, 101801

Measurements of σ^{total} , σ^{diff} , and couplings with leptonic final states: 4*l*, $\ell \nu \nu$, and $\ell \gamma$, $\nu \nu \gamma$

$ZZ^{(*)} \rightarrow 4I$ Lineshape Measurement at 8 TeV

4l lineshape is measured in mass range of 80 \rightarrow 1000 GeV

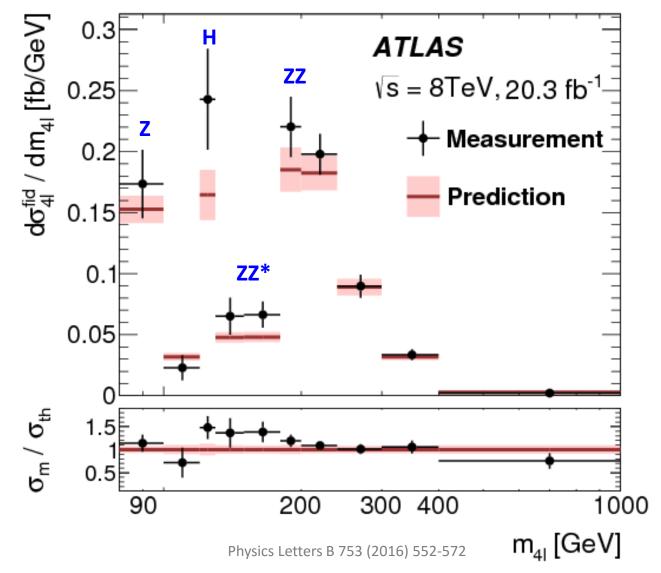

Phys. Lett. B753 (2016) 552-572

- Multiple processes involved in 4l productions; Measure at once give consistent look into missing corners not covered by dedicated analyses with certain mass ranges
- Test the validity of the SM through the interplay of QCD and EW effects for different 4l production mechanisms

Interference between $gg \rightarrow 4l$ and off-shell Higgs $\rightarrow 4l$; Region for Higgs width study

4l Event Selection to Measure the Lineshape

Note: σ (SM) calculation for diff processes includes diff. higher-order corrections (State-of-Art prediction) ⁴

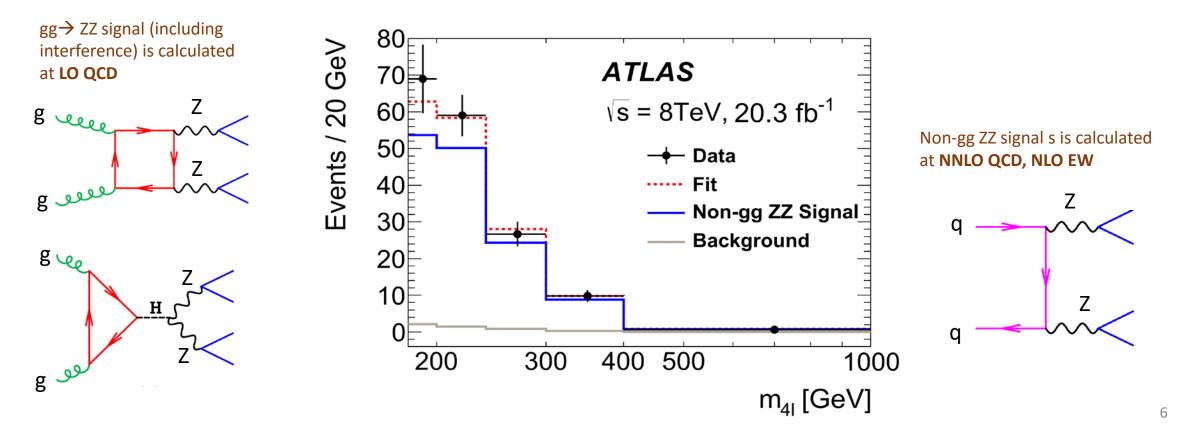

Unfolded 4I Spectrum in Fiducial Phase Space

Compared with state-of-art MC prediction

- PowHeg MC (NLO+PS) predicts acceptance
- Higgs pole and on-shell ZZ scaled to NNLO predictions
- NLO EWK correction applied to high mass
- Statistical uncertainty O(10%)
- Systematic uncertainty O(5%)
 - lepton reconstruction

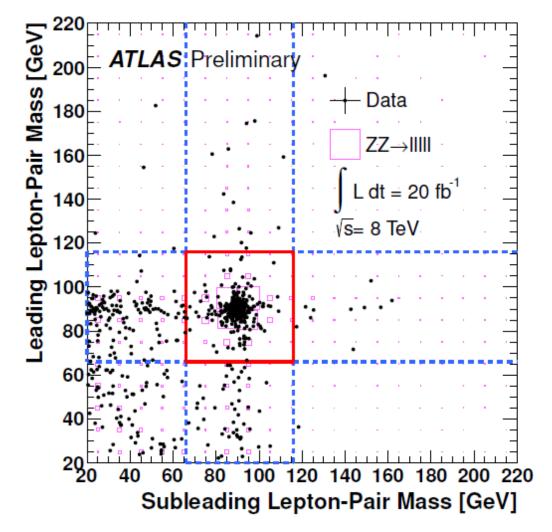
Remarks

- 1) Good agreement In the **Z** and **H** resonances with dedicated measurements
- 2) Data excess between H pole and on-shell ZZ– no NNLO correction available
- 3) Data excess around ZZ on-shell (no higherorder correction for continuum $gg \rightarrow 4I$)



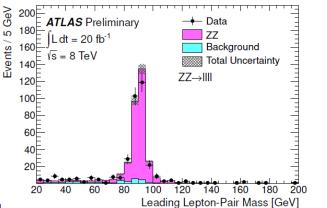
Extract the $gg \rightarrow ZZ \rightarrow 4l$ Contribution

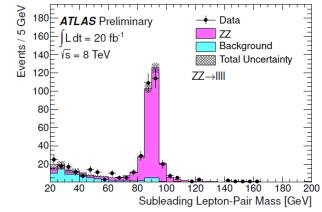
Study of $gg \rightarrow 4l$ contribution in $m_{4l} > 200$ GeV region Physics Letters B 753 (2016) 552-572


• Derived $\mu = \sigma_{gg}^{meas} / \sigma_{gg}^{LO}$ $\mu_{gg} = 2.4 \pm 1.0 \text{ (stat.)} \pm 0.5 \text{ (syst.)} \pm 0.8 \text{ (theory)}$

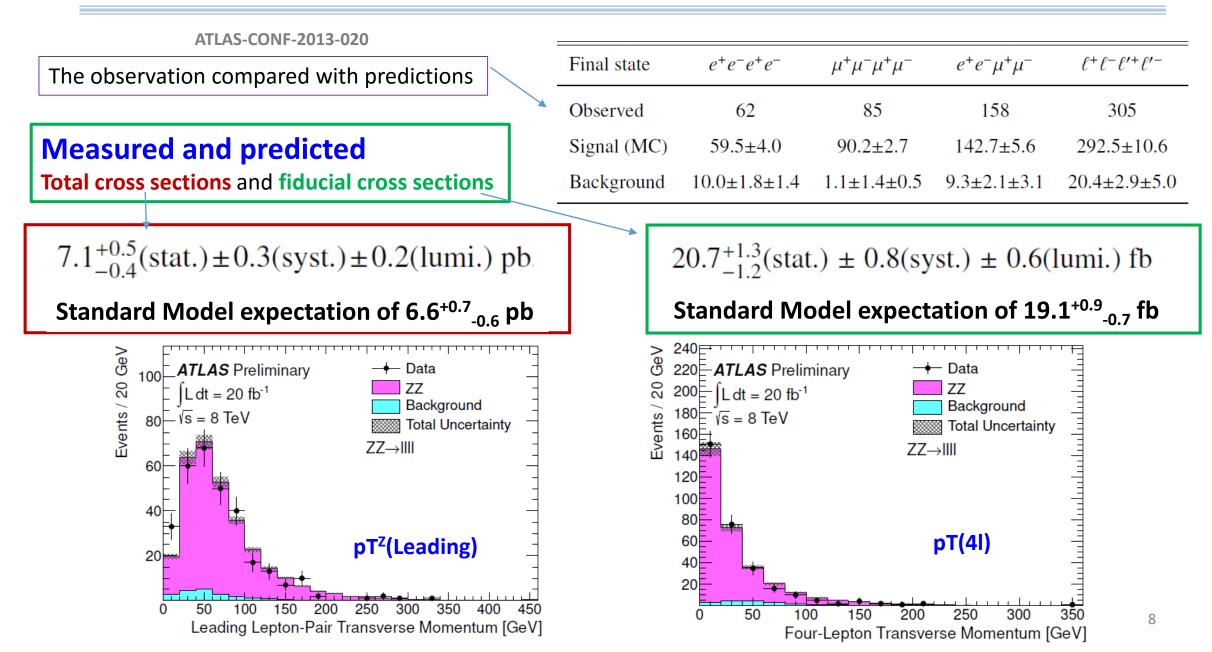
Compatible to recent calculation of NLO/LO k-factor of 1.5-2 (PhysRevD.92.094028)

Study of On-shell ZZ Production at 8 TeV


ATLAS-CONF-2013-020

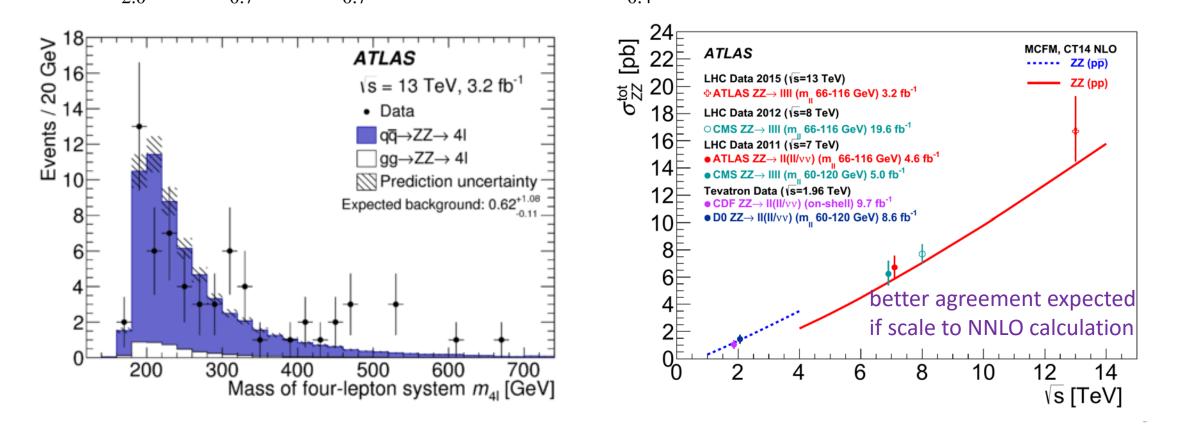


Observed 305 candidate, estimate 20.5±5.5 background


Measure the total cross section in a phase space: for both Z in mass window: 66 GeV < m_z < 116 GeV (with 4e, 4μ, 2e2μ)

Fiducial cross section is measured with $p_T^{\ell} > 7 \text{ GeV}$, $|\eta \ell| < 2.7$, $\Delta R(\ell, \ell') > 0.2$ and 66 GeV < $m_z < 116 \text{ GeV}$

Measurements of ZZ Production Cross Section at 8 TeV


ZZ Production Cross Section Measurement at 13 TeV

Phys. Rev. Lett. 116, 101801 (2016)

\Rightarrow With ZZ \rightarrow 4l channel; Each lepton pT>20 GeV, each Z pairs with 66 < mass < 116 GeV

 \Rightarrow Observed 63 ZZ \rightarrow 4l candidate events (3.2 fb⁻¹), estimate 1% from backgrounds

Measured σ in phase space of 66<m_z<116 GeV 16.7 $^{+2.2}_{-2.0}$ (stat.) $^{+0.9}_{-0.7}$ (syst.) $^{+1.0}_{-0.7}$ (lumi.) pb **SM prediction (NNLO)** (PLB 750 (2015) 407) $15.6^{+0.4}_{-0.4}$ pb

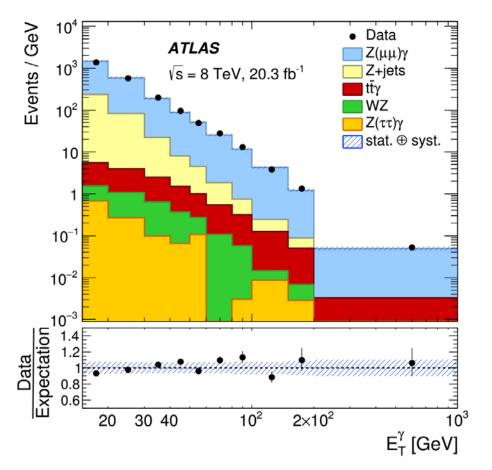
Zy Measurements at 8 TeV (L = 20.3 fb⁻¹)

Phys. Rev. D 93, 112002 (2016)

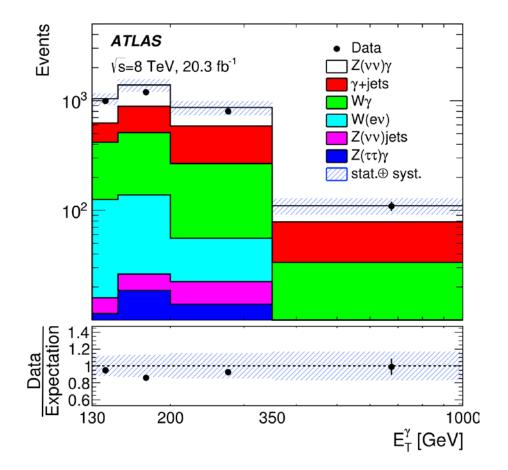
Measurement of $Z\gamma$ production with $Z \rightarrow II$ (I=e, μ) and $Z \rightarrow vv$ channels

- Event selection and major background
 - **Z→II** channels (two leptons pT>25 GeV, one or two γ E_T>15 GeV)
 - Major background from Z+jets (estimated from data)
 - $Z \rightarrow vv$ channels (hard cut on MET (>100 GeV), harder cut on γ E_T (>130 GeV) due to photon trigger threshold
 - Major backgrounds from γ+jet and W+γ (estimated from data)
 - Exclusive channel defined with jet veto (for jet pT>30 GeV)
 - Study high order calculation on Zγ channel

Selected numbers of candidates, and estimated bkg


Ζγ→ΙΙγ	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$	
	$N_{\text{iets}} \ge 0$		$N_{\rm iets} = 0$		
$N_{Z\gamma}^{ m obs}$	13807	17054	10268	12738	
$N_{Z\gamma}^{j \to \gamma}$ _N Other BKG	$1840\pm90\pm480$	$2120\pm90\pm560$	$1260\pm80\pm330$	$1510\pm80\pm400$	
$N_{Z\gamma}^{\text{Other BKG}}$	$143 \pm 3 \pm 26$	$146 \pm 2 \pm 28$	$30.8\pm1.6\pm3.9$	$26.9\pm1.5\pm3.4$	

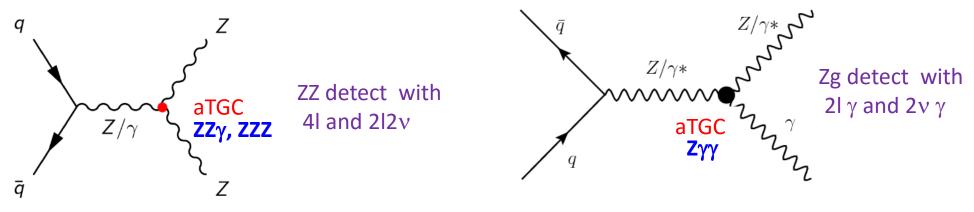
Ζγ→ννγ	$N_{\text{jets}} \ge 0$	$N_{\rm jets} = 0$
$N_{Z\gamma}^{ m obs}$	3085	1039
$N_{Z\gamma}^{\gamma+\text{jets}}$	$950\pm30\pm300$	$9.2\pm3.5\pm0.7$
$N_{Z\gamma}^{\hat{W}(\ell u)\gamma}$	$900\pm50\pm300$	$272 \pm 14 \pm 92$
$N_{Z\gamma}^{W(ev)}$	$258 \pm 38 \pm 18$	$147 \pm 21 \pm 10$
$N_{Z\gamma}^{Z(\nu\bar{\nu})+\text{jets}}$	$22.9\pm0.5\pm6.1$	$11.1 \pm 0.4 \pm 3.4$
$N_{Z\gamma}^{Z(au^+ au^-)\gamma}$	$46.2 \pm 0.9 \pm 3.2$	$10.23 \pm 0.43 \pm 0.72$


E_{τ}^{γ} Distributions of the Selected Zy Events

Spectra sensitive to aTGC measurement

 $Z(\rightarrow II)\gamma$: Clean observed 3x10⁴ candidates, expected 4000 backgrounds

 $Z(\rightarrow vv)\gamma$: better statistics in high E_{T} observed 4000 candidates, expected 2200 backgrounds


Zγ Total and Differential Cross Section Measurements

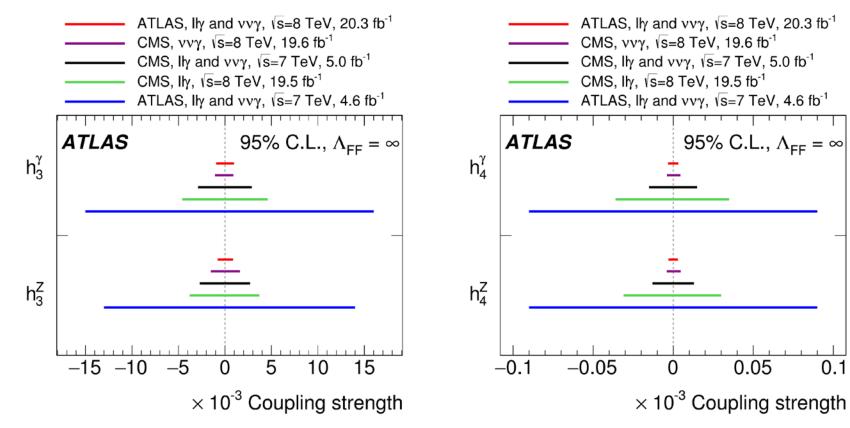
Channel	Measurement [fb]	MCFM Prediction [fb]	NNLO Prediction [fb]	
	N _{iet}	-		
$e^+e^-\gamma \ \mu^+\mu^-\gamma \ \ell^+\ell^-\gamma$	$1510 \pm 15(\text{stat.})^{+91}_{-84}(\text{syst.})^{+30}_{-28}(\text{lumi.})$ $1507 \pm 13(\text{stat.})^{+78}_{-73}(\text{syst.})^{+29}_{-28}(\text{lumi.})$ $1507 \pm 10(\text{stat.})^{+78}_{-73}(\text{syst.})^{+29}_{-28}(\text{lumi.})$	1345 ⁺⁶⁶ ₋₈₂	1483^{+19}_{-37}	About 6% uncertainty from combined IIγ fiducial σ
ννγ	$68 \pm 4(\text{stat.})^{+33}_{-32}(\text{syst.}) \pm 1(\text{lumi.})$	68.2±2.2	$81.4^{+2.4}_{-2.2}$	
	Njet	s = 0		Main systematics:
$\begin{array}{c} e^+e^-\gamma \\ \mu^+\mu^-\gamma \\ \ell^+\ell^-\gamma \end{array}$	$\frac{1205 \pm 14(\text{stat.})^{+84}_{-75}(\text{syst.}) \pm 23(\text{lumi.})}{1188 \pm 12(\text{stat.})^{+68}_{-63}(\text{syst.})^{+23}_{-22}(\text{lumi.})}$ $\frac{1189 \pm 9(\text{stat.})^{+69}_{-63}(\text{syst.})^{+23}_{-22}(\text{lumi.})}{1189 \pm 9(\text{stat.})^{+69}_{-63}(\text{syst.})^{+23}_{-22}(\text{lumi.})}$	1191^{+71}_{-89}	1230^{+10}_{-18}	photon, backgroundsConsistent with NNLO
ννγ	$43 \pm 2(\text{stat.}) \pm 10(\text{syst.}) \pm 1(\text{lumi.})$	51.0 ^{+2.1} -2.3	$49.21^{+0.61}_{-0.52}$	_
differe sectior of m _{IIy} f	ev. D 93, 112002 (2016) ential cross ns measurements for Njet >=0 and 0 categories	10^{2} 10^{2} 10^{1} $ATLAS$ 10^{1} $Vs = 8 \text{ TeV}, 20.3$ 10^{3} $N_{jets} \ge 0 \text{ If } \gamma \text{ cha}$ $Njet >= 0$ 10^{4} 1.4 1.4 1.4		Data Data Data MCFM (CT10) MCFM (CT10) MNLO (MMHT2014) 10^{-1}
art being	sensitive to NNLO effect	50 86 96 110 135	170 210 270 350 470 640 200 m _{r*rγ} [GeV]	

12

Explore Anomalous Neutral Gauge Boson Couplings

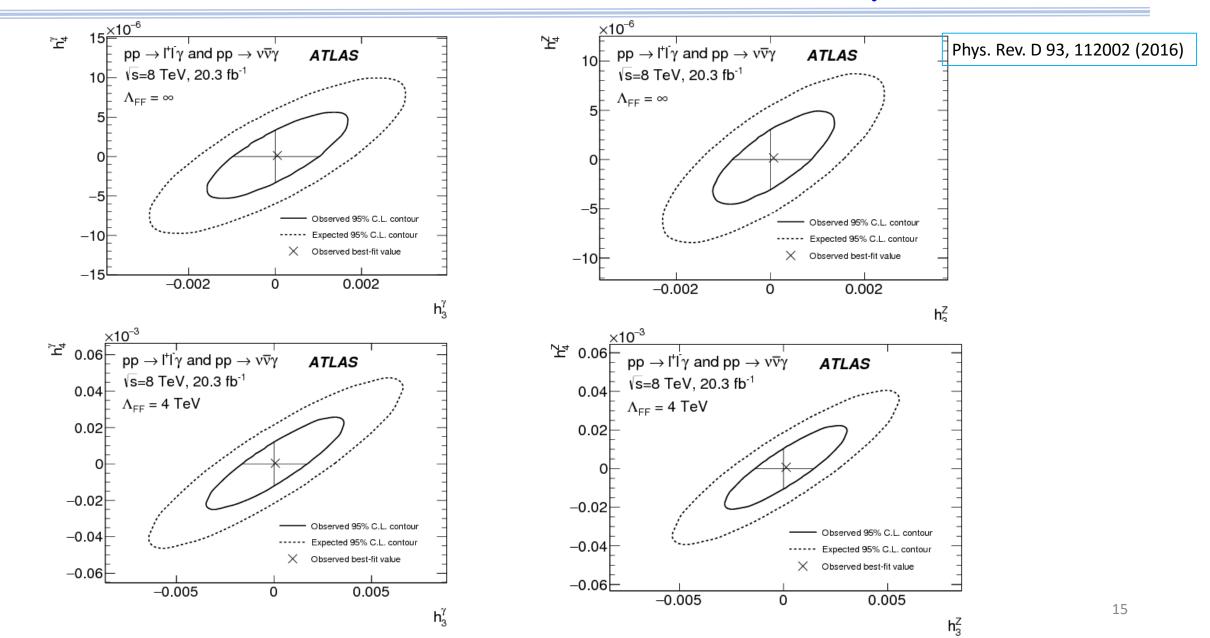
- Vector boson self-couplings arise in the SM from the non-Abelian nature of the SU(2)_LxU(1)_Y gauge symmetry; Only charged TGCs are allowed in SM
- ✤ In the SM the vertices of neutral gauge bosons are forbidden → anomalous neutral gauge boson couplings would indicate the existence of new physics.
 - For example, exotic, high mass particles can affect the observed properties of SM particles at low energy through virtual effects.

- Effective Langrangian approach is used to extend the SM Lagrangian with new operators in a generic way to accommodate physics beyond the SM
- ***** Leading Z pT and γ E_Tspectra are used to explore the aTGC in analysis


Explore aTGC in Zy production

Using effective lagrangian approach: aTGC parameters

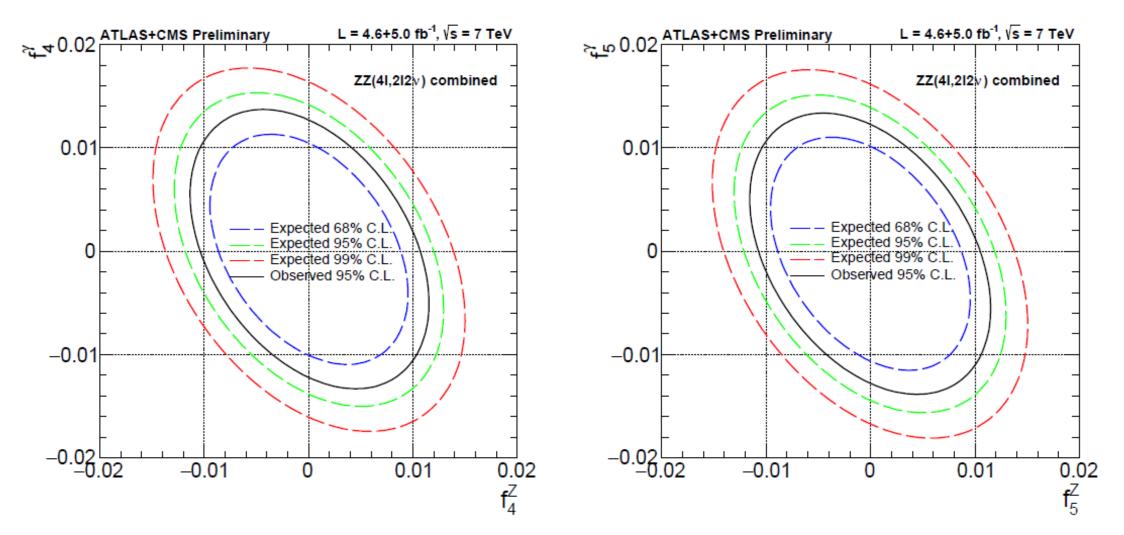
 $h_{3}^{Z}, h_{3}^{\gamma}, h_{4}^{Z}, h_{4}^{\gamma}$


Phys. Rev. D 93, 112002 (2016)

- Use the event yield with photon $E_T > 250 \ (\ell \ell \gamma)$ and 400 $(\nu \nu \gamma)$ GeV with exclusive selection $(N_{Jets} = 0)$ for the limit setting.
- Set limit on the CP-conserving couplings : h_3^Z and h_4^Z from $ZZ\gamma$ vertex and h_3^γ and h_4^{γ} from $Z\gamma\gamma$ vertex

0.1

2D aTGC limit at 95% CL extracted from Zy production



aTGC Limits at 95% C.L. from ZZ Production at 7 TeV

ATLAS-CONF-2016-036		ATLAS CMS combined	Channel	Limits	∫∠dt	vs
CMS-PAS-SMP-15-001	f ₄	·	ZZ(2 2v)	[-1.9e-02, 1.9e-02]	4.6 fb ⁻¹	7 TeV
		· · · · · · · · · · · · · · · · · · ·	ZZ(4I)	[-1.8e-02, 1.8e-02]	4.6 fb ⁻¹	7 TeV
		· · · · · · · · · · · · · · · · · · ·		[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
		;i	ZZ(4I)	[-1.2e-02, 1.3e-02]	5.0 fb⁻¹	7 TeV
Search for aTGC from pTZ			ZZ(2l2v+4l)	[-1.0e-02, 1.1e-02]	9.6 fb⁻¹	7 TeV
· ·	f_4^Z	H	ZZ(2 2v)	[-1.6e-02, 1.6e-02]	4.6 fb ⁻¹	7 TeV
spectra with 41, and 212 ${ m v}$	•4	H	ZZ(4I)	[-1.5e-02, 1.5e-02]	4.6 fb⁻¹	7 TeV
final states;		H	ZZ(2l2v+4l)	[-1.3e-02, 1.3e-02]	4.6 fb⁻¹	7 TeV
		÷	ZZ(4I)	[-1.0e-02, 1.1e-02]	5.0 fb⁻¹	7 TeV
		÷÷	ZZ(2l2v+4l)	[-8.7e-03, 9.1e-03]	9.6 fb⁻¹	7 TeV
SHERPA MC is used by	f_5^{γ}		ZZ(2l2v)	[-2.0e-02, 1.9e-02]	4.6 fb⁻¹	7 TeV
both ATLAS and CMS to		·	ZZ(4I)	[-1.8e-02, 1.8e-02]	4.6 fb⁻¹	7 TeV
model the anomalous		·	ZZ(2l2v+4l)	[-1.5e-02, 1.4e-02]	4.6 fb⁻¹	7 TeV
		÷	ZZ(4I)	[-1.3e-02, 1.3e-02]	5.0 fb⁻¹	7 TeV
coupling (ΖΖγ, and ΖΖΖ)		<u>.</u>	ZZ(2l2v+4l)	[-1.1e-02, 1.0e-02]	9.6 fb⁻¹	7 TeV
signals with parameters:	f_5^Z	H	ZZ(2l2v)	[-1.7e-02, 1.6e-02]	4.6 fb⁻¹	7 TeV
J I	'5	H	ZZ(4I)	[-1.6e-02, 1.6e-02]	4.6 fb ⁻¹	7 TeV
$f_4^{\gamma}, f_4^{Z}, f_5^{\gamma}, f_5^{Z}$		H	ZZ(2l2v+4l)	[-1.3e-02, 1.2e-02]	4.6 fb⁻¹	7 TeV
		;;	ZZ(4I)	[-1.1e-02, 1.1e-02]	5.0 fb⁻¹	7 TeV
	I		ZZ(2l2v+4l)	[-9.1e-03, 8.9e-03]	9.6 fb⁻¹	7 TeV
		-0.02 0 0.0)2	0.04 0.	06	0.08
				aTGC Lim	its @9	5% C.L. 16

2D aTGC Limit at 95% C.L. from ZZ production

ATLAS-CONF-2016-036 CMS-PAS-SMP-15-001

Summary

- The measured ZZ(*) and Zγ production cross sections (including integrated total and differential cross sections) at 7, 8 and 13 TeV by the ATLAS experiment are consistent within the uncertainties with the SM predictions calculated at NNLO QCD
- The stringent limits on anomalous neutral triple-gauge couplings are set by comparing the pT^V (V=Z, or γ) spectra of data with the theoretical predicted spectra in anomalous neutral triple-gauge-boson coupling space.

Back up slides

Explore aTGC from ZZ (ATLAS and CMS combined) ATLAS-CONF-2016-036 CMS-PAS-SMP-15-001

- ◆ Data used to explore neutral aTGC (ZZZ, ZZγ) are ZZ→4I, 2I2v at 7 TeV collected by ATLAS (4.6 fb⁻¹) and CMS (5.0 fb⁻¹)
- SHERPA is used by both ATLAS and CMS to model the anomalous coupling signals (aTGC parameters: f_4^{γ} , f_4^{z} , f_5^{γ} , f_5^{z})

$$\mathcal{L}_{\text{VZZ}} = -\frac{e}{M_{\text{Z}}^2} \left\{ \left[f_4^{\gamma} \left(\partial_{\mu} F^{\mu\alpha} \right) + f_4^{Z} \left(\partial_{\mu} Z^{\mu\alpha} \right) \right] Z_{\beta} \left(\partial^{\beta} Z_{\alpha} \right) - \left[f_5^{\gamma} \left(\partial^{\mu} F_{\mu\alpha} \right) + f_5^{Z} \left(\partial^{\mu} Z_{\mu\alpha} \right) \right] \tilde{Z}^{\alpha\beta} Z_{\beta} \right\}$$

Source	CMS (4I)	Yield
Data		54.0
ZZ SM s	53.2	
Backgrou	and estimate	1.4

ATLAS (4I)	Observed events	Expected ZZ signal events	Background events
$50 < p_{\rm T}^Z < 90 {\rm GeV}$	42	$13.6 \pm 0.2 \pm 1.3$	$26.0 \pm 4.5 \pm 1.1$
$50 < p_{\rm T}^Z < 90 \text{ GeV}$ $90 < p_{\rm T}^Z < 130 \text{ GeV}$	29	$15.7 \pm 0.3 \pm 1.7$	$16.0 \pm 2.8 \pm 0.7$
$p_{\rm T}^Z > 130 \text{ GeV}$	16	$10.1 \pm 0.1 \pm 1.5$	$4.9 \pm 1.8 \pm 0.2$

ATLAS (2l2∨)	Observed events	Expected ZZ signal events	Background events
$0 < p_{\rm T}^Z < 60 {\rm GeV}$	28	$27.9 \pm 0.2 \pm 2.0$	$0.6 \pm 0.8 \pm 0.5$
$60 < p_{\rm T}^{\rm Z} < 100 {\rm GeV}$	25	$14.6 \pm 0.2 \pm 1.2$	$0.2 \pm 0.2 \pm 0.2$
$100 < p_{\rm T}^Z < 200 {\rm GeV}$	11	$9.3 \pm 0.1 \pm 0.9$	$0.1 \pm 0.1 \pm 0.1$
$p_{\rm T}^Z > 200 \text{ GeV}$	2	$1.6 \pm 0.1 \pm 0.3$	$0.01 \pm 0.01 \pm 0.01$

Neutral aTGC limits from ZZ (ATLAS and CMS)

Mar 2016	0	CMS HILLAS		Channel	Limits	∫∠dt	√s
f ^γ ₄				ZZ	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
'4		⊢−−−−− 1		ZZ	[-5.0e-03, 5.0e-03]	19.6 fb⁻¹	8 TeV
		— ———————————————————————————————————		ZZ (2l2v)	[-3.6e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
		—		ZZ (comb)	[-3.0e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
Z 4	H		-	ZZ	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
4		⊢−−−−− I		ZZ	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
				ZZ (2l2v)	[-2.7e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
		⊢ −−−1		ZZ (comb)	[-2.1e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
γ 5				ZZ	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
5				ZZ	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
		⊢−−−− 1		ZZ(2l2v)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 TeV
		⊢−−− 1		ZZ(comb)	[-2.6e-03, 2.7e-03]	24.7 fb ⁻¹	7,8 TeV
Z 5			-	ZZ	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
5		⊢−−−−− I		ZZ	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
		⊢−−−− 1		ZZ (2l2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 TeV
I			1	ZZ (comb)	[-2.2e-03, 2.3e-03]	24.7 fb ⁻¹	7,8 TeV
-0	.02	0	().02	0.04 aTGC Lim		0.06 % C.L.

JHEP 03 (2013) 128

Phys. Lett. B 740 (2015) 250

Eur. Phys. J. C 75 (2015) 511

Neutral aTGC limits from Zγ (ATLAS and CMS)

April 2016	CMS ATLAS			
		Channel Limits	∫ <i>L</i> dt √s	
h_3^{γ}		Ζγ(ΙΙγ,ννγ) [-1.5e-02, 1.6e-0	2] 4.6 fb ⁻¹ 7 TeV	<u>Phys. Rev. D 87, 112003 (2013)</u>
''3	н	Ζγ(ΙΙγ,ννγ) [-9.5e-04, 9.9e-0	4] 20.3 fb ⁻¹ 8 TeV	
	⊢ −−1	Ζγ(ΙΙγ,ννγ) [-2.9e-03, 2.9e-0	3] 5.0 fb ⁻¹ 7 TeV	Deve Deve D 00 (2014) 002005
	⊢−−−−	Zγ(IIγ) [-4.6e-03, 4.6e-0	3] 19.5 fb ⁻¹ 8 TeV	<u>Phys. Rev. D 89 (2014) 092005</u>
	н	Ζγ(ννγ) [-1.1e-03, 9.0e-0	4] 19.6 fb ⁻¹ 8 TeV	
		Ζγ(ΙΙγ,ννγ) [-2.2e-02, 2.0e-0	2] 5.1 fb ⁻¹ 1.96 TeV	L High Energy Dhys. 10 (2012) 164
h_3^Z		Ζγ(ΙΙγ,ννγ) [-1.3e-02, 1.4e-0	2] 4.6 fb ⁻¹ 7 TeV	<u>J. High Energy Phys. 10 (2013) 164</u>
3	н	Ζγ(ΙΙγ,ννγ) [-7.8e-04, 8.6e-0	4] 20.3 fb ⁻¹ 8 TeV	
	⊢ −−1	Ζγ(ΙΙγ,ννγ) [-2.7e-03, 2.7e-0	3] 5.0 fb ⁻¹ 7 TeV	
	⊢−−− 1	Zγ(llγ) [-3.8e-03, 3.7e-0	3] 19.5 fb ⁻¹ 8 TeV	JHEP 04 (2015) 164
	н	Ζγ(ννγ) [-1.5e-03, 1.6e-0	3] 19.6 fb ⁻¹ 8 TeV	`
	├ ────┤	Ζγ(ΙΙγ,ννγ) [-2.0e-02, 2.1e-0	2] 5.1 fb ⁻¹ 1.96 TeV	
h₄γ	H	Ζγ(ΙΙγ,ννγ) [-9.4e-05, 9.2e-0	5] 4.6 fb ⁻¹ 7 TeV	
4	Н	Ζγ(ΙΙγ,ννγ) [-3.2e-06, 3.2e-0	6] 20.3 fb ⁻¹ 8 TeV	
	н	Ζγ(ΙΙγ,ννγ) [-1.5e-05, 1.5e-0	5] 5.0 fb ⁻¹ 7 TeV	
	⊢	Zγ(llγ) [-3.6e-05, 3.5e-0	5] 19.5 fb ⁻¹ 8 TeV	
	Н	Ζγ(ννγ) [-3.8e-06, 4.3e-0	6] 19.6 fb ⁻¹ 8 TeV	
h₄Z	⊢	Ζγ(ΙΙγ,ννγ) [-8.7e-05, 8.7e-0	5] 4.6 fb ⁻¹ 7 TeV	
4	Н	Ζγ(ΙΙγ,ννγ) [-3.0e-06, 2.9e-0	6] 20.3 fb ⁻¹ 8 TeV	
	н	Ζγ(ΙΙγ,ννγ) [-1.3e-05, 1.3e-0	5] 5.0 fb ⁻¹ 7 TeV	
	⊢−−−	Zγ(llγ) [-3.1e-05, 3.0e-0	5] 19.5 fb ⁻¹ 8 TeV	
		Ζγ(ννγ) [-3.9e-06, 4.5e-0	6] 19.6 fb ⁻¹ 8 TeV	
	-0.2 0 0.2	0.4 0.6	$0.8 \times 10^{-1} (h_{2}),$	
		aTGC Limits @		22