Future of the CMS Muon Systems

Upgrades and Aging

Justin Pilot, UC Davis on behalf of the CMS Collaboration

ICHEP 2016 Chicago, Illinois, USA 6 August

Introduction

- LHC and experiments have been performing incredibly well
 - Record luminosities $(1.25 \times 10^{34} / \text{cm}^2/\text{s})$
- While we have had the last major jump in collision energy, the instantaneous luminosity is expected to increase by at least a factor of 5 in the future
 - ▶ HL-LHC expects 5–7 x 10³⁴ Hz/cm²

- Several upgrade projects on the horizon to maintain efficiency to physics processes in those conditions Higher backgrounds (~140 pileup!)
- This talk will focus on the `Phase II' upgrade projects for the CMS muon systems

CMS Muon Systems

Three separate technologies currently in use

CMS Muon Systems

Three separate technologies currently in use

CMS 2016 Muon Performance

• Muon systems are efficiently taking high-quality data!

Phase II Upgrade Strategy

- Ensure detector longevity
 - Electronics and chamber operation
- Increase redundancy
 - Add layers in 1.5 < |η| < 2.4, currently CSC coverage only

Mitigate rate increases

- Changes to readout electronics
- New improved detectors for better discrimination of backgrounds
- Adopt new trigger strategies
- Retain sensitivity to physics processes
 - Maintain reasonable trigger thresholds
 - Add forward coverage to $|\eta|$ of 2.8

Upgrades of Existing Detectors

CSC Detectors

- Cathode strip chambers used in the endcap sections of CMS
- Current electronics for readout cannot sustain the planned trigger rates and latency
 - Analog pipelines fill up \rightarrow data loss

- Proposal to replace by digital readout boards for stations MEx/1
 - ▶ 1.6 < |η| < 2.4</p>
 - ▶ 108 chambers x 5 boards
 - Improved memory depth
 - Fast optical links

DT Detectors

- Detectors expected to operate for the HL-LHC data-taking up to 3000 fb⁻¹
 - Conservative estimate of 6.3% efficiency loss
 - Can be mitigated further by HV setting changes, e.g.

Failure rates after 10 yrs @ HL-LHC

Lifetime of the tubes	1%
FEB failure rate	2.8%
HVB failure rate	1.5%
Lower efficiency due to radiation	1%
Total chamber efficiency loss	6.3%

- Changes to electronics needed to maintain performance
 - Move part of readout chain offchamber
 - Implemented through fast optical links
 - Improved time resolution from 12.5 ns to 3 ns, factor of 4 reduction in deadtime

New Forward Detectors

Phase II Scenario

New detectors to be installed

- ▶ GEM detectors GE1/1, GE2/1
- Improved RPC chambers RE3/1, RE4/1
- Forward muon tagger ME0

GEM Detectors

- Gas electron multiplier detectors new technology for CMS
 - 2 layers of triple-foil GEM chambers to be installed in front of existing CSC-ME1/1 chambers
 - Covers $1.6 < |\eta| < 2.2$
- Signals to be used in conjunction with CSC trigger primitives
 - See slides from J. Ruiz Alvarez for details on DAQ and control

GEM Detectors

- Addition of GE1/1 reduces trigger rate by factor of 2-4 or more
 - Bending angle between GE1/1 and CSC-ME1/1 chambers used for discrimination
 - Retain efficiency for physics processes
- GE1/1 scheduled for LS2 and GE2/1 for LS3 or sooner

RPC Detectors

- Resistive plate chambers currently in use in both the barrel and endcap regions of CMS
 - Existing detectors can cope with rates through HL-LHC period
- Addition of rings RE3/1 and RE4/1 restores redundancy in forward region
 - ▶ 1.6 < |η| < 2.4</p>
 - Improved chamber design
 - Option considered for timing resolution of ~100 ps → mitigate rate increases from neutron background
- High rate capability needed!
 - Can perform with particle rates up to 2 kHz/cm²

ME0 Forward Muon Tagger

- With the new forward calorimetry (HGCAL), space is freed behind for additional instrumentation
- 6 successive GEM triple-foil chambers
 - Shielding surrounding active elements
- Increases muon coverage and trigger capability
 - Also provides neutron background discrimination
- Efficiency of ~90% for muon identification up to $|\eta| < 2.8$ and $p_T > 5$ GeV

Summary

- Plans for upgrades of the CMS muon systems are well underway!
 - Improvements to electronics of existing detectors
 - New high-rate, rad-hard detectors in forward regions
- Maintain operation through 10 yr
 HL-LHC operation with high efficiency!
- More information available in CMS
 Phase II Technical Proposal [1]
 - Many talks/posters here at ICHEP also!

Backup Material

References:

Technical Proposal for the Phase-II Upgrade of the CMS Detector <u>https://cds.cern.ch/record/2020886</u> CMS Technical Design Report for the Muon Endcap GEM Upgrade <u>https://cds.cern.ch/record/2021453</u>

Aging Scenarios

- Assuming some degradation in chamber operation, system loses reconstruction efficiency without upgraded detectors
 - Degradation of CSC, RPC segments/hits included
- With upgrades, ~90% efficiency is maintained due to increased redundancy
- Note: DT aging scenarios not accounted for

