

Electroweak physics at CEPC

Zhijun Liang

Institute of High Energy Physics, Chinese Academy of Science

ICHEP 2016, August 6, 2016 Chicago, USA

CEPC accelerator

- Electron-positron circular collider
 - Higgs Factory (E_{cms}=250GeV, 10⁶ Higgs)
 - Precision study of Higgs coupling in ZH runs
 - complementary to ILC
 - See Manqi and Gang's talk this morning in Higgs section for more details
 - Z factory (E_{cms} =91 GeV, 10^{10} Z Boson) :
 - Precision Electroweak measurement in Z pole running
 - Major focus of this talk
- Preliminary Conceptual Design Report(Pre-CDR) available :
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- Aiming to finalize Conceptual Design Report (CDR) next year

CEPC detector (1)

- ILD-like design with some modification for circular collider
 - No Power-pulsing
- Tracking system (Vertex detector, TPC detector, 3.5T magnet)
 - Expected Pixel size in vertex detector: less than 16x 16µm
 - Expected Impact parameter resolution: less than 5µm
 - Expected Tracking resolution : δ(1/Pt) ~ 2*10⁻⁵(GeV⁻¹)

CEPC detector (2)

- Calorimeters:
 - Concept of Particle Flow Algorithm (PFA) based
 - EM calorimeter energy resolution: σ_E/E ~ 0.16/√E
 - Had calorimeter energy resolution: $\sigma_F/E \sim 0.5/\sqrt{E}$
 - Expected jet energy resolution : $\sigma_F/E \sim 0.3/\sqrt{E}$

Motivation

- CEPC have very good potential in electroweak physics.
- Precision measurement is important
 - It constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

The prospect of CEPC electroweak physics in pre-CDR study

- Expected precision on some key measurements in CEPC Pre-CDR study based on projections from LEP and ILC.
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- From now to next year, plan to update the study for Conceptual Design Report (CDR) with full detector simulation

Observable	LEP precision	CEPC precision	CEPC runs
m_Z	2 MeV	0.5 MeV	Z lineshape
m_{W}	33 MeV	3 MeV	ZH (WW) thresholds
A_{FB}^b	1.7%	0.15%	Z pole
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.01%	Z pole
$R_{m{b}}$	0.3%	0.08%	Z pole
N_{ν} (direct)	1.7%	0.2%	ZH threshold
N_{ν} (indirect)	0.27%	0.1%	Z lineshape
$R_{m{\mu}}$	0.2%	0.05%	Z pole
$R_{ au}$	0.2%	0.05%	Z pole

Z mass measurement

- LEP measurement: 91.1876±0.0021 GeV
- CEPC possible goal: 0.5 MeV
 - Z threshold scan runs is needed to achieve high precision.
 - Stat uncertainty: 0.2MeV
 - Better to have more than 10fb⁻¹ for off-peak runs (6 off-peaks runs)
 - Syst uncertainty: ~0.5 MeV
 - Beam energy uncertainty need to be better than 5ppm
 - start to Establishing a accelerator model relating the measured beam energy
 - Study of the resonant depolarization technique to measure beam energy (LEP approach)

Branching ratio (Rb)

 $\frac{\Gamma(Z \to bb)}{\Gamma(Z \to had)}$

• LEP measurement 0.21594 ±0.00066

Stat error : 0.44%Syst error : 0.35%

Typically using 65% working points

CEPC

- Expected Stat error (0.04%)
- Expected Syst error (0.07%)
- Expect to use 80% working points
 - 15% higher efficiency than SLD
 - 20-30% higher in purity than SLD

Uncertainty	LEP	CEPC	CEPC improvement
charm physics modeling	0.2%	0.05%	tighter b tagging working point
hemisphere tag correlations for b events	0.2%	0.1%	Higher b tagging efficiency
gluon splitting	0.15%	0.08%	Better granularity in Calo

Backward-forward asymmetry measured from b jet

 $A_{FB}^{b\bar{b}}(0)$

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Method 3: D meson method (>8%, less important method)

CEPC

- Focus more on method 2 (inclusive b jet measurement)
 - Expected Systematics (0.15%):

Uncertainty	LEP	CEPC	CEPC improvement	
charm physics modeling	0.2%	0.05%	tighter b tagging working point	
tracking resolution	0.8%	0.05%	better tracking resolution	
hemisphere tag correlations for b events	1.2%	0.1%	Higher b tagging efficiency	
QCD and thrust axis correction	0.7%	0.1%	Better granularity in Calo	

Weak mixing angle sin² θ_{eff}^{lept}

- LEP/SLD: 0.23153 ± 0.00016
 - 0.1% precision.
 - Stat error in off –peak runs is one of limiting factor.
- CEPC
 - Stat error : 0.02% ;
 - systematics error : 0.01%
 - Input From Backward-forward asymmetry measurement
 - The statistics of off-Z peak runs is one of the important issue.
 - Need at least 10 fb⁻¹ for off-peak runs to reach high precision.

Branching ratio (R^{mu})

- LEP result: 0.2% total error (Stat : 0.15%, Syst : 0.1%)
- CEPC: 0.05% total error expected
 - Better EM calorimeter is the key

Systematics source	LEP	CEPC
Radiative events (Z->μμγ)	0.05%	0.05%
Photon energy scale	0.05%	0.01%
Muon Momentum scale	0.009%	<0.003%
Muon Momentum resolution	0.005%	<0.003%

W mass measurement

- Current PDG precision: 80.385±0.015 GeV
 - Possible goal for CEPC: 3 MeV
- Three methods for W mass measurements:
 - 1.WW Threshold scan (√s=160GeV):
 - Advantage: Very robust method, can achieve high precision.
 - Disadvantage
 - Beam polarization design has not finished.
 - Higher cost , Require dedicated runs >100fb⁻¹ on WW threshold(~160GeV)
 - 2.Kinematic Reconstruction
 - Need good understanding of ISR
 - 3.Direct measurement of the hadronic mass (major method for CDR)
 - Based on 10¹⁰ Z->hadrons sample to calibrate jet energy scale (< 3MeV)
 - Advantage :
 - No additional cost :measured in ZH runs (sqrt(s)=250GeV)
 - Higher statistics: 10 times larger than WW threshold region
 - Lower requirement on beam energy uncertainty.

For CEPC CDR next year,

- Plan to compare these three methods with full simulation study
- · Major questions : whether we need WW threshold scan and beam polarization

Summary

- CEPC electroweak physics in Preliminary Conceptual Design Report.
 - Expected precision based on projections from LEP and ILC.
- Aim for more realistic study with full simulation for CDR next year.
 - Mainly focus on a few key measurements.
 - m_W
 - Weak mixing angle

Welcome to join this effort