Highlights from the ANTARES neutrino telescope

05/08/2016 A. Enzenhöfer on behalf of the ANTARES Collaboration ICHEP 2016 Chicago

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

Detection Principle

Diffuse Flux

Diffuse Flux searches with reduced search window

Point Source search

Multi Messenger Program

Dark Matter

Detection Principle

Diffuse Flux

Diffuse Flux searches with reduced search window

Point Source search

Multi Messenger Program

Dark Matter

Setup

Setup

Setup

Scientific Program

- Neutrino astrophysics
 - Diffuse fluxes
 - Point sources
- Multi-messenger studies
 - Prompt alerts: TAToO, GW150914 follow up ...
 - Transient gamma & X-ray sources
 - GRBs
- Dark Matter searches
- Study of atmospheric neutrinos, oscillations, atmospheric muons, cosmic-ray anisotropy . . .
- Particle searches: nuclearites, monopoles ...
- Acoustic neutrino detection
- Earth and Sea sciences
- . . .

Partially covered here

Not covered here

Detection Principle

Diffuse Flux

Diffuse Flux searches with reduced search window

Point Source search

Multi Messenger Program

Dark Matter

Detection Principle

Neutrino interactions: Neutrino topologies: • CC: $\nu_I N \xrightarrow{W} IX$ Interaction (CC/NC)
 lepton output (e,μ,τ) • NC: $\nu N \xrightarrow{Z} \nu N$ Tracks and showers atmospheric muon neutring or charged lepton all neutrino flavours, CC & NC muon neutrino, CC only (track reconstruction) (shower reconstruction)

Performance

- Tracks best suited for astronomy
- Median < 0.4° above 10 TeV
- 90 % purity

- Cascade events (upgoing) also used for astronomy
- ullet Shower confined within $\sim 10\,\mathrm{m}$
- Angular resolution 3°
- Energy resolution better than $\sim 10\%$ in a wide energy range

3

 $log(E_{MC}/GeV)$

Detection Principle

Diffuse Flux

Diffuse Flux searches with reduced search window

Point Source search

Multi Messenger Program

Dark Matter

Diffuse Flux (Tracks)

- Data: 2007 2015 (2451 livedays)
- Optimization based on IceCube best fit flux (spectral index Γ = 2 and Γ = 2.5)
- Variables used checked with test sample
- Above Ecut:
 - Observed: 19 evts
 - \bullet Background: 13.5 \pm 3 evts
 - IceCube-like signal: 3 evts

Data (2007-2015)

Diffuse Flux (Showers)

- Data: 2007-2013 (1405 livedays)
- Optimization based on IceCube best fit flux (spectral index Γ = 2 and Γ = 2.5)
- Variables used checked with test sample
- Above Ecut:
 - Observed: 7 evts
 - Background: 5 ± 2 evts
 - IceCube-like signal:
 - 1.5 evts

Diffuse Flux (Combined)

- Combination of the sensitivity from the two independent diffuse flux analyses as: $\frac{1}{S_{Comb}} = \frac{1}{S_{Showers}} + \frac{1}{S_{Tracks}}$
- Upper limit (FC, 90% C.L.) after unblinding of the shower (1405 d, 2007-2013) and the track (2451 d, 2007-2015) samples, compared to the ANTARES sensitivity for the whole data sample and the measurements from IceCube

Detection Principle

Diffuse Flux

Diffuse Flux searches with reduced search window

Point Source search

Multi Messenger Program

Dark Matter

Fermi Bubbles

- Data: 2008 2015 (1765 days livetime)
- ν_{μ} only
- Fermi Bubbles
 - 3 OFF-zone regions of $\Delta\Omega=0.66\,\text{sr}$
 - Average expected background: 19.7 evts
 - Observed in the ON-region : 28 evts

ullet Previously reported excess reduced to 1.5 σ

Galactic Ridge

- Data: 2007 2013 (1622 days)
- ν_{μ} only
- Cuts optimized for $\Gamma = 2.4 2.5$
- Galactic Ridge:
 - 9 OFF-zones
 - Search region |I| < 30 °, |b| < 4°
 - Average expected background: 3.7 evts
 - Observed in the ON-zones: 2 evts
- No excess in the HE neutrinos
- 90 % c.l. upper limits: $3 < E_{\nu} < 300 \, \text{TeV}$

ON/OFF zones in galactic coordinates

Detection Principle

Diffuse Flux

Diffuse Flux searches with reduced search window

Point Source search

Multi Messenger Program

Dark Matter

ANTARES-IceCube PS search

- Combined search for neutrino point-sources in the Southern Hemisphere with the ANTARES and IceCube neutrino telescopes, ApJ 823(2016)65
- Southern sky muon tracks

ANTARES-IceCube PS search

- IceCube 2008–2011 + ANTARES 2007–2012 data:
 - IC-40: 375 days of livetime with 22779 events
 - IC-59: 348 days of livetime with 64240 events
 - IC-79: 316 days of livetime with 59009 events
 - ANTARES: 1338 days of livetime with 4136 events

ANTARES-IceCube PS search

- Full sky + 40 sources
 (17 extra-galactic + 22 galactic + Galactic Centre)
- ullet Upper limits improvement up to a factor \sim 2
- No significant cluster found, largest excesses:
 - Full sky search: 0.7 σ significance (post-trial) at (RA: 332.8°, δ : 46.1°)
 - Candidate list:
 - 1.2σ significance (post-trial) for HESS J1741.302

Point Sources

- Data: 2007-2013 (1690 days)
- 6490 tracks, 172 showers
- Unbinned all-sky search
- 54 candidate sources + 8 high energy starting events (HESE) μ
- No significant cluster, largest excess:
 - All-sky: 1.3 σ at RA: 311.7° δ : -48.3° $\overset{\text{N}}{\text{L}}$
 - Candidate list: 0.75 σ for HESS J06302+057

 $sin(\delta)$

ANTARES 07-15 [Preliminary]

IC 3y MESE [ApJ 824(2016)2.L28]
IC 3y MESE E. < 100 TeV

ANTARES 07-13 limits IC 6y [ICRC 2015]

IC 3y MESE limits

ANTARES 07-15 E, < 100 TeV [Preliminary]

Detection Principle

Diffuse Flux

Diffuse Flux searches with reduced search window

Point Source search

Multi Messenger Program

Dark Matter

Multi Messenger Program

Increases chances of detection:

- common sources for different messengers
- limits searches in time and space, low backgrounds
- uncorrelated backgrounds and systematics

GeV-TeV γ -rays Fermi, HESS, HAWC

Optic / X-rays TAROT, ROTSE, Swift, ZADKO, MWA, SUPERB, MASTER

ANTARES GW150914 follow up

- Alert triggered by LIGO on 14/SEP/2015: first Gravitational Wave detected
- Limits from ANTARES dominates below O(100 TeV)
- Size of GW150914 : 590 (°)² ANTARES resolution: < 0.5 (°)²
- Limits on total energy radiated in neutrinos: < 10 % GW
- Future: Receive / send alerts in real time

Detection Principle

Diffuse Flux

Diffuse Flux searches with reduced search window

Point Source search

Multi Messenger Program

Dark Matter

Dark Matter search from the Sun

• 1321 days of livetime of muon tracks during 2007–2012

Dark Matter search from the Galactic Center

- Muon tracks in data from 2007 2013
- Competitive results, constraining SUSY dark matter

Secluded Dark Matter search from the Sun

- Dark matter secluded by a mediator: detection by mediator which eventually decays in neutrinos
- Sun as the source candidate
- 1321 days of livetime of muon tracks during 2007–2012
- Limits inferred in the absence of excess of signal

Spin dependent

Spin independent

Detection Principle

Diffuse Flux

Diffuse Flux searches with reduced search window

Point Source search

Multi Messenger Program

Dark Matter

- Only a fraction of the physics program of ANTARES could be covered here
- Complementary results to IceCube and experiments from different fields
- Constraints on the origin of the IceCube signal
- Large multimessenger efforts
- Excellent angular resolution, view of Southern sky, competitive sensitivities
- Improvements still to come: include showers in all analyses
- Demonstration of the great potential of deep-sea Neutrino Telescopes
- ANTARES will keep producing results until the next generation Mediterranean neutrino telescope, KM3NeT, takes over

