Towards the Understanding of Jet Substructures and Cross Sections in Heavy ion Collisions using Soft-Collinear Effective Theory

Yang-Ting Chien

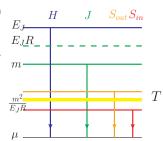
Los Alamos National Laboratory, Theoretical Division, T-2 LHC Theory Initiative Fellow, MIT Center for Theoretical Physics (in fall)

> August 6, 2016 ICHEP 2016, Chicago

JHEP 1412 (2014) 061 and JHEP 1605 (2016) 023

Y.-T. Chien Heavy Ion Jet Theory 1 / 17

Outline


- Hard Probes with jets
 - Precision jet substructure calculations
 - The need of resummation
- Soft-Collinear Effective Theory (SCET)
 - · Factorization theorem
 - Renormalization group evolution
 - Medium modification by Glauber interactions
- Results and conclusions

Y.-T. Chien Heavy Ion Jet Theory 2 / 17

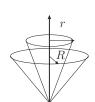
Resolving jets and the QGP with jet substructure

Jet guenching is a multi-scale problem

- The strong suppression of hadron and jet cross sections has been observed more than a decade ago
- Many models exploit the idea of parton energy loss and can explain the data
- However, it has been clear that more differential and correlated measurements are needed to distinguish various jet formation mechanisms
- Jet substructure can resolve jets at different energy scales
- It can also separate final-state, jet-medium interactions from initial state effects
- The interference between jets and the medium is an even more complicated multi-scale problem

Effective field theory techniques are extremely useful

Y.-T. Chien Heavy Ion Jet Theory 3/17


0.00 0.05 0.10 0.15 0.20 0.25 0.30

quark LO

r

quark NLL gluon LO gluon NLL

Jet shape (Ellis, Kunszt, Soper)

$$\Psi_{J}(r,R) = \frac{\sum_{r_{i} < r} E_{T_{i}}}{\sum_{r_{i} < R} E_{T_{i}}}$$

$$\langle \Psi \rangle = \frac{1}{N_{J}} \sum_{J}^{N_{J}} \Psi_{J}(r,R)$$

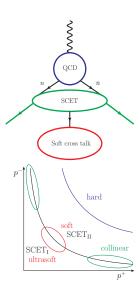
$$\psi(r) \stackrel{20}{}_{15}$$

$$\psi(r,R) = \frac{d\langle \Psi \rangle}{dr}$$

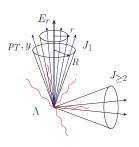
- Jet shapes probe the averaged energy distribution inside a jet
- The infrared structure of QCD induces Sudakov logarithms
- Fixed order calculation breaks down at small r
- Large logarithms of the form $\alpha_s^n \log^m r/R$ $(m \le 2n)$ need to be resummed

The necessity of resummation for jet substructure calculations

Y.-T. Chien


Heavy Ion Jet Theory

4 / 17


Soft-Collinear Effective Theory (SCET)

- Effective field theory techniques are useful whenever there is clear scale separation
- SCET separates physical degrees of freedom in QCD by a systematic expansion in power counting
 - Match SCET with QCD at the hard scale by integrating out the hard modes
 - Integrating out the off-shell modes gives collinear Wilson lines which describe the collinear radiation
 - The soft sector is described by soft Wilson lines along the jet directions
- At leading power, soft-collinear decoupling leads to the factorization of cross sections

SCET factorizes a complicated, multi-scale problem into multiple simpler, single-scale problems

Jet shape factorization theorem (Chien et al)

 The factorization theorem for the differential cross section of the production of N jets with p_{Ti}, y_i, the energy E_r inside the cone of size r in one jet, and an energy cutoff Λ outside all the jets is the following,

$$\frac{d\sigma}{dp_{T_i}dy_idE_r} = H(p_{T_i}, y_i, \mu)J_1^{\omega_1}(E_r, \mu)J_2^{\omega_2}(\mu)\dots S_{1,2,\dots}(\Lambda, \mu)$$

For the differential jet rate

$$\frac{d\sigma}{dp_{T_i}dy_i} = H(p_{T_i}, y_i, \mu)J_1^{\omega_1}(\mu)J_2^{\omega_2}(\mu)\dots S_{1,2,\dots}(\Lambda, \mu)$$

- $H(p_{T_i}, y_i, \mu)$ describes the hard scattering process at high energy
- J^ω₁(E_r, μ) describes the probability of having the amount of energy E_r inside the cone of size r
 - X_c is constrained within jets by the corresponding jet algorithm
- $S_{1,2,...}(\Lambda,\mu)$ describes how soft radiation is constrained in measurements

Factorization theorem simplifies dramatically and has a product form

Jet shape factorization theorem (Chien et al)

The averaged energy inside the cone of size r in jet 1 is the following,

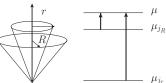
$$\langle E_r \rangle_{\omega} = \frac{1}{\frac{d\sigma}{dp_{T_i}dy_i}} \int dE_r E_r \frac{d\sigma}{dp_{T_i}dy_i dE_r} = \frac{H(p_{T_i}, y_i, \mu) J_{E, r_1}^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)}{H(p_{T_i}, y_i, \mu) J_1^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)} = \frac{J_{E, r_1}^{\omega_1}(\mu) J_{E, r_2}^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)}{J_1^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_{E, r_2}^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)}{J_1^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_{E, r_2}^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)}{J_1^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_{E, r_2}^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)}{J_1^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_{E, r_2}^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)}{J_1^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_{E, r_2}^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)}{J_1^{\omega_2}(\mu) J_2^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_2^{\omega_2}(\mu) J_2^{\omega_2}(\mu)$$

- $J_{E,r}^{\omega}(\mu)=\int dE_r E_r J^{\omega}(E_r,\mu)$ is referred to as the **jet energy function**
- Huge cancelation between the hard, unmeasured jet and soft functions
 - The jet shape is insensitive to the details of the underlying hard scattering process as well as the other part of the event
- The integral jet shape, averaged over all jets, is the following

$$\langle \Psi \rangle = \frac{1}{\sigma_{\rm total}} \sum_{i=a,s} \int_{PS} dp_T dy \frac{d\sigma}{dp_T dy} \Psi_{\omega}^i \ , \ \text{where} \ \Psi_{\omega} = \frac{J_{E,r}(\mu)/J(\mu)}{J_{E,R}(\mu)/J(\mu)} = \frac{J_{E,r}(\mu)}{J_{E,R}(\mu)}$$

The jet shape is within the class of collinear observables and is relatively insensitive to the soft radiation

Scale hierarchy and renormalization group evolution


$$\frac{dJ_{E,r}^g(r,R,\mu)}{d\ln\mu} = \left[-C_F \Gamma_{\text{cusp}} \ln \frac{\omega^2 \tan^2 \frac{R}{2}}{\mu^2} - 2\gamma_{J^q} \right] J_{E,r}^q(r,R,\mu)$$

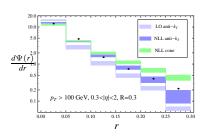
$$\frac{dJ_{E,r}^g(r,R,\mu)}{d\ln\mu} = \left[-C_A \Gamma_{\text{cusp}} \ln \frac{\omega^2 \tan^2 \frac{R}{2}}{\mu^2} - 2\gamma_{J^g} \right] J_{E,r}^g(r,R,\mu)$$

• $\langle E_r \rangle_{\omega}$ and Ψ_{ω} are renormalization group invariant

$$\Psi_{\omega} = \frac{J_{E,r}(\mu)}{J_{E,R}(\mu)} = \frac{J_{E,r}(\mu_{j_r})}{J_{E,R}(\mu_{j_R})} U_J(\mu_{j_r},\mu_{j_R})$$

- Identify the natural scale μ_{j_r} to eliminate large logarithms in $J_{E,r}(\mu_{j_r})$
- The RG evolution kernel $U_J(\mu_{j_r}, \mu_{j_R})$ resums the large logarithms

 $\mu_{i_r} \approx E_J \times r$

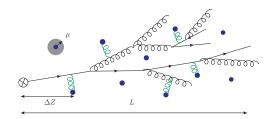

RG evolution between μ_{j_r} and μ_{j_R} resums $\log \mu_{j_r}/\mu_{j_R} = \log r/R$

Y.-T. Chien


Heavy Ion Jet Theory

8 / 17

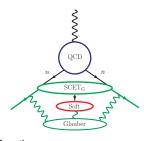
Baseline jet shape calculations


- Compare with pp data at 2.76 and 7 TeV
- Bands are theory uncertainties estimated by varying μ_{i_r} and μ_{i_R}
- The shape difference for jets reconstructed using different algorithms is significant
- In the region $r \approx R$, higher fixed order calculations and power corrections are more prominent

For low p_T jets, power corrections have significant contributions

Multiple scattering in a medium

- · Coherent multiple scattering and induced bremsstrahlung are the qualitatively new ingredients in the medium parton shower
- Interplay between several characteristic scales:
 - Debye screening scale μ
 - Parton mean free path λ
 - Radiation formation time τ
- From thermal field theory and lattice QCD calculations, an ensemble of quasi particles with debye screened potential and thermal masses is a reasonable parameterization of the medium properties



$$\frac{1}{\sigma_{el}} \frac{d\sigma_{el}}{d^2 q_\perp} = \frac{\mu^2}{\pi (q_\perp^2 + \mu^2)^2}$$

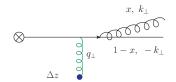
Parton splitting and induced bremsstrahlung interfere in the jet formation

SCET with Glauber gluons (SCET_G)

- Glauber gluon is the relevant mode for medium interactions
- SCET_G was extended from SCET (Idilbi et al, Vitev et al)
- Glauber gluons are generated from the colored charges in the QGP providing transverse momentum transfer
 - Given a medium model, we can use SCET_G to consistently couple the medium to jets

The jet shape can be directly calculated using the splitting functions

$$J_{E,r}^{i}(\mu) = \sum_{i,k} \int_{PS} dx dk_{\perp} \left[\frac{dN_{i \to jk}^{vac}}{dx d^{2}k_{\perp}} + \frac{dN_{i \to jk}^{med}}{dx d^{2}k_{\perp}} \right] E_{r}(x, k_{\perp})$$


 The medium induced splitting functions are calculated numerically using SCET_G with the Bjorken-expanded hydrodynamic QGP model

SCET_G provides a consistent framework to incorporate the medium modification and the resummation for jet substructure calculations

Medium-induced splitting

The hierarchy between τ and λ determines the degree of coherence between multiple scatterings

$$au = \frac{x \,\omega}{(q_{\perp} - k_{\perp})^2}$$
 v.s. λ

Medium induced splitting functions in SCET_G (Ovanesyan et al)

$$\frac{dN_{q\to qg}^{med}}{dxd^2k_\perp} = \frac{C_F\alpha_s}{\pi^2} \frac{1}{x} \int_0^L \frac{d\Delta z}{\lambda} \int d^2q_\perp \frac{1}{\sigma_{el}} \frac{d\sigma_{el}}{d^2q_\perp} \frac{2k_\perp \cdot q_\perp}{k_\perp^2(q_\perp - k_\perp)^2} \left[1 - \cos\left(\frac{(q_\perp - k_\perp)^2\Delta z}{x\omega}\right)\right]$$

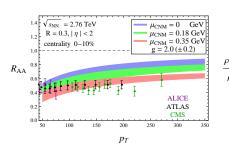
• $\frac{dN^{med}}{dx^2k_{\perp}} \rightarrow$ finte as $k_{\perp} \rightarrow 0$: the Landau-Pomeranchuk-Migdal effect

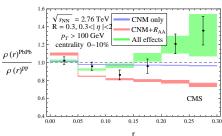
Large angle bremsstrahlung takes away energy, resulting in jet energy loss and the modification of jet shapes

Jet shapes in heavy ion collisions

Jet shapes get modified through the modification of jet energy functions

$$\Psi(r) = \frac{J_{E,r}^{vac} + J_{E,r}^{med}}{J_{E,R}^{vac} + J_{E,R}^{med}} = \frac{\Psi^{vac}(r)J_{E,R}^{vac} + J_{E,r}^{med}}{J_{E,R}^{vac} + J_{E,R}^{med}}$$

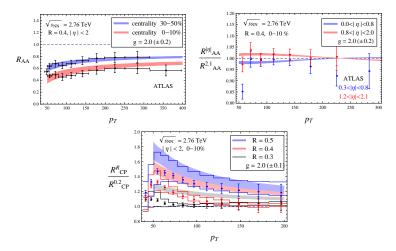

- Large logarithms in $\Psi^{vac}(r) = J^{vac}_{E,r}/J^{vac}_{E,R}$ have been resummed
- There are no large logarithms in $J_{E,r}^{med}$ due to the LPM effect
- The RG evolution of medium-modified jet energy functions is unchanged
- However, with the use of small R's in heavy ion collisions, there is significant jet energy loss which leads to the suppression of jet production cross sections
- Jet-by-jet shapes are averaged with the jet cross sections


$$\frac{1}{\langle N_{\rm bin} \rangle} \frac{d\sigma_{\rm CNM}^k}{d\eta dp_T} = \sum_{ijX} \int dx_1 dx_2 f_i^A(x_1, \mu_{\rm CNM}) f_j^A(x_2, \mu_{\rm CNM}) \frac{d\sigma_{ij \to kX}}{dx_1 dx_2 d\eta dp_T}$$

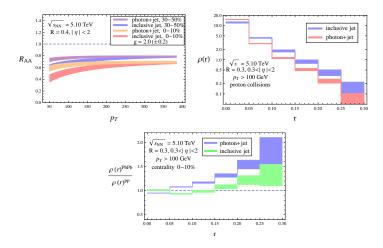
$$\frac{1}{\langle N_{\rm bin} \rangle} \frac{d\sigma_{med}^i}{d\eta dp_T} \bigg|_{p_T} = \frac{1}{\langle N_{\rm bin} \rangle} \frac{d\sigma_{\rm CNM}^i}{d\eta dp_T} \bigg|_{\frac{p_T}{L}} \frac{1}{1 - \epsilon_i}$$

• Cold nuclear matter effects are characterized by $\mu_{
m CNM}$

Results



- The plots are the ratios between the jet cross sections and differential jet shapes in lead-lead and proton-proton collisions
- Jet shapes are insensitive to cold nuclear matter effects
- Jet shape modifications are due to the following two effects
 - Gluon jets are more suppressed which increases the quark jet fraction
 - Jet-by-jet the shape is broadened


Y.-T. Chien Heavy Ion Jet Theory 14 / 17

Results

 The plots shows the dependence of jet cross section suppressions on centrality, jet rapidity and jet radius

Results

 Predictions for jet shapes and cross sections at 5 TeV for inclusive and photon-tagged jets

Conclusions

- Jet substructure in proton and heavy ion collisions can be calculated within the same framework
 - Promising agreement with data and phenomenological applications
 - Stay tuned before Hard Probes 2016 for jet fragmentation function, jet mass distribution and the splitting function
- Physics understanding as of ICHEP 2016:
 - the modification of jet substructure is a combination of cross section suppression and jet-by-jet broadening
- Heavy ion jet physics as of ICHEP 2016:
 - Precision jet substructure studies in heavy ion collisions has been initiated and we are entering the golden age

Y.-T. Chien Heavy Ion Jet Theory 17 / 17