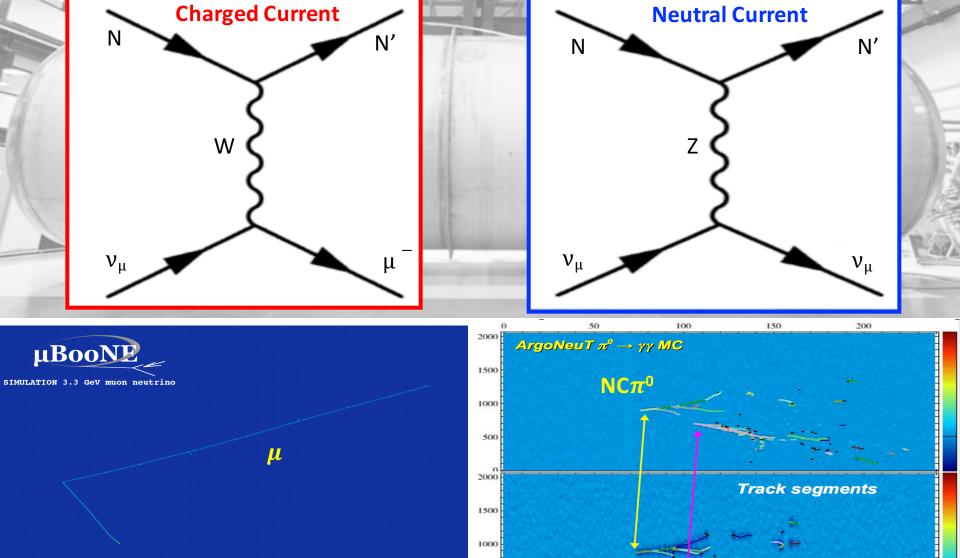


Neutrino interactions in MicroBooNE

Xiao Luo, Yale University On behalf of the MicroBooNE collaboration **ICHEP 2016**

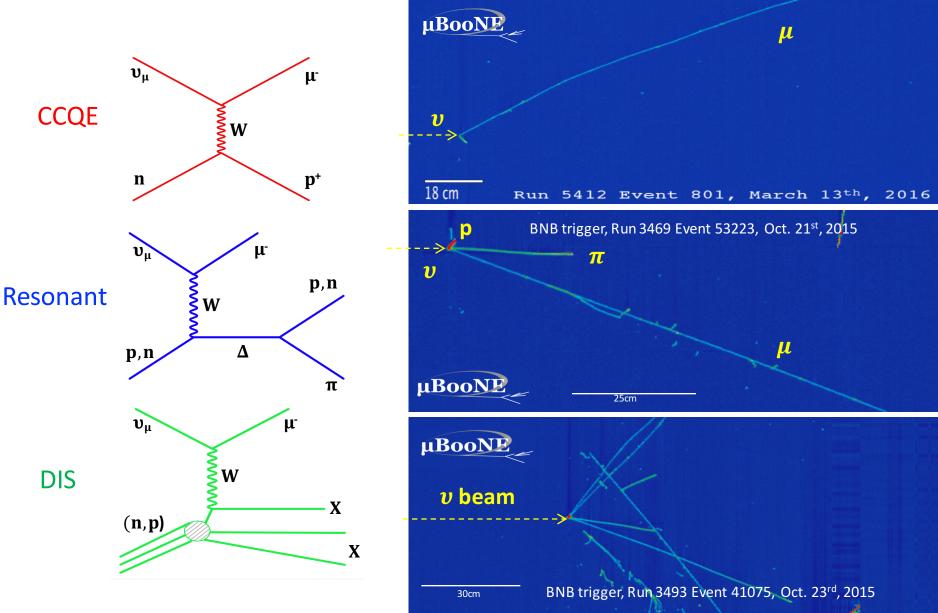

Motivation

- Neutrino oscillation goals require precise measurements of crosssections (e.g. DUNE experiment).
- Why ν -Ar: interpretation of results from FNAL LArTPC experiments (Limited measurements of ν -Ar cross-section).
- Interests to nuclear physics community.

Neutrino interaction in MicroBooNE LArTPC

500

ν_{μ} CC inclusive cross-section


First channel in cross-section program: ν_{μ} CC inclusive

- Relatively simple event signature tag outgoing long muon track.
- Help to develop reconstruction tools.
- A standard channel to compare with other neutrino experiments.
- Muon kinematics are insensitive to Final state interactions.
- Understanding low energy excess requires precise measurement of $oldsymbol{v}_e$ appearance and various background
 - $\circ \nu_{\mu}$ **CC** help to constrain the ν_{e} flux uncertainty.
 - O Build a large sample to study proton, π^0 , π^\pm in neutral current (NC) background.

ν_{μ} CC Inclusive

ν_{μ} CC Inclusive in MicroBooNE

Nuclear Effects complicate things

Complications due to nuclear effects:

- Short Range Correlation
- Meson Exchange Current
- Final State Interactions

MicroBooNE will probe nuclear physics with excellent precision.

Fully automated event selection

Challenge:

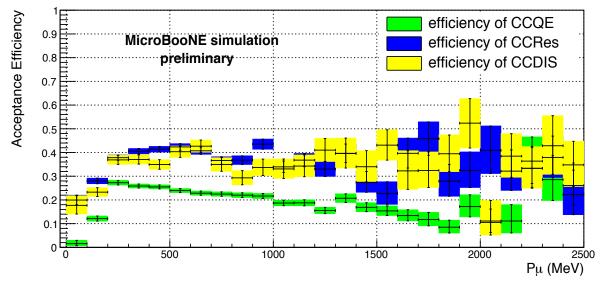
Cosmic rays in the surface LArTPC.

Selection strategy:

- 1. Flash inside of Beam trigger window.
- 2. Simple PMT flash TPC track matching.
- 3. Further cuts on topology and calorimetry to suppress cosmic background.

Topological and calorimetric features of signal and cosmic background:

Muon has bigger dE/dx close to the vertex


Selection efficiency and purity (From MC)

Purity: 65%

Efficiency: 30%

- If multiplicity >=2, no containment requirement.
- Single track sample requires containment in FV.
- Restrictive cuts to remove cosmic background, in particular, muon decay to Michel electron.

Room for improvement:

- Better PMT flash TPC track matching can relax the downstream cuts.
- Improve track reconstruction especially for short tracks.
- Other selection technique such as **BDT**, deep learning, etc.

Selection Distributions (Data Vs MC)

- Data: (Beam On Beam Off)
 corresponds to 4.95 X 10¹⁹ POT, about
 2700 ν_μCC candidate events are
 selected.
- MC: Neutrino interaction (GENIE 2.8.6), cosmic (CORSIKA v7.4003).
- Area normalized comparison between data and MC.
- Only statistical error is shown here

Cross-section measurement underway

- Systematics Uncertainties:
 - Flux uncertainty (dominant uncertainty)
 - Uncertainties from detector effects
 - Model uncertainties.
 - Reconstruction efficiency

- P_{μ} reconstruction for differential cross-section.
 - Contained track: from range
 - Uncontained track: from multiple scattering
- Integrated cross-section -> single/double differential cross-section.
- ν_{μ} CC inclusive selection lays a foundation for future study of exclusive topological channels.

Conclusion

- ν_{μ} CC inclusive to kick off MicroBooNE cross-section program.
- First result on fully automated ν_{μ} CC inclusive event selection.
- Area normalized distributions show good data-MC comparison.
- ν_{μ} CC inclusive cross-section measurement is underway.
- Cross-section studies of many other channels are on going.

Thank you!

Backup

Composition of the selection

Before selection: 60% QE 30% RES 10% DIS

After selection: 43% QE 42% RES 14% DIS

(c) Selection II: Selection efficiency as a function of the true muon angle $\cos(\theta)$.

Sensitivity to test different models

Different models after Selection

M. Martini, M. Ericson, G. Chanfray, J. Marteau Phys.Rev. C 80 065501(2009)

Reconstruction

Figure 2: Reconstruction chain for data and MC processing. The red stars on some of the boxes indicate that the algorithms return reconstructed 3D vertices.

MicrobooNE and FNAL neutrino beam

- MicroBooNE Goals:
 - Address MiniBooNE low energy excess
 - ν Ar Cross-section measurement at ~1GeV range
 - LArTPC R&D
- FNAL Booster Neutrino Beam (BNB), mainly ν_{μ} with energy peak around 800 MeV.
- Neutrino interactions from the PMT flash.

Φ(v) MicroBooNE /50MeV/m²/10⁶POT

10⁻⁵

0.0

0.5

1.0

1.5

2.0

2.5

Energy (GeV)

First step of Low energy excess - CC π^0

1. Finding π^0 from the CC inclusive sample

4. Photon background in Low energy excess

2. Automated **photon** reconstruction for π^0

3. e/γ separation in dEdx

Plan of cross-section measurement

CC inclusive integrated and differential cross-section

 $NC\pi^0$: "Neutral Pions & Prospects for Neutral Current Interactions in MicroBooNE" by Ryan Grosso.

NC elastic: Measure cross section to determine Δs .

 u_{μ} CC Track multiplicity: "Charged particle multiplicity analysis" by Aleena Rafique.

Kaon analysis: "A MC study of Kaon Identification Sensitivity in MicroBooNE" by **Elena Gramellini and Varuna Meddage.**

 ν_e **Electron**: "Single-Electron Event Selection Techniques for the MicroBooNE Low-Energy Excess Analysis" by **Rui An.**

Public notes (link):

- 7/4/16 MICROBOONE-NOTE-1010-PUB
 Selection and kinematic properties of numu charged-current inclusive events in 5E19 POT of MicroBooNE data
- ♦ 5/3/16 MICROBOONE-NOTE-1006-PUB Study Towards an Event Selection for Neutral Current Inclusive Single PiO Production in MicroBooNE
- 7/4/16 MICROBOONE-NOTE-1014-PUB
 A Comparison of Monte-Carlo Simulations and Data from MicroBooNE