

Results from the Beam Energy Scan Program at RHIC

Yadav Pandit (STAR Collaboration)

University of Illinois at Chicago

BES Program at RHIC

Exploring the QCD phase diagram:

Vary collision energy to change temperature and baryon chemical potential

- 1. Search for turn-off signatures of sQGP
- 2. Search for 1st order phase transition from partonic to hadronic phase.

http://arxiv.org/abs/1007.2613

BES Program at RHIC

RHIC is uniquely suited to map the QCD phase diagram at finite baryon density

Study of colliding system as a function of:

- 1) Center-of-mass energy
- 2) System size

System	Energy
Au+Au	200,130, 62.4, 39,27,19.6, 14.5,11.5,9.2,7.7
Cu+Cu	200,62.4,22
U+U	193
Cu+Au	200
Au+He3	200
d+Au	200, 62.4, 39, 19.6
p+p	200,510, 62.4

Main device for tracking and PID: TPC and TOF Uniform acceptance: $|\eta| < 1.0$ and

 $0 < \phi < 2\pi$: coverage

Excellent particle ID: π , K, p through TPC dE/dx aided by TOF

Long-lived particles (K_s^0 , Λ , Ξ , Ω) can be reconstructed via topological cuts

Freeze-out Parameters

Chemical freeze-out parameter **T** and m_B from particle yields $(\pi, K, p, \Lambda, \Xi)$ and their anti-particles

- J. Cleymans et al. Phys. Rev. C 73, 034905 (2006)
- A. Andronic et al. Nucl. Phys. A 834, 237C4(2010)

Azimuthal Anisotropy

Azimuthal distribution of particles with respect to the symmetry plane

$$E\frac{dN^{3}}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} \left(1 + 2v_{1}\cos(\phi - \psi_{R}) + 2v_{2}\cos2(\phi - \psi_{R}) + \ldots\right)$$
isotropic directed elliptic

Directed Flow (v₁)

H. Stoecker, Nucl. Phys. A 750 (2005)

Dip in net-proton dv₁/dy (but different location) resembles theory prediction with a first order phase transition

→ Softest point of EoS?

STAR, PRL, 112, 162301(2014)

Elliptic Flow (v_2)

STAR, PRL, 110, 142301(2013)

- Number of constituent quark (NCQ) scaling in v₂ => partonic collectivity
 => deconfinement in high-energy nuclear collisions
- At lower energies, the universal v₂ NCQ scaling for particle/antiparticle is broken, Larger split of particle-antiparticle at lower beam energy.
- Consistent with hadronic interactions becoming dominant.

Triangular Flow (v₃)

STAR, PRL, **116**, 112302 (2016)

- Sizable v₃ at lower energies at central collisions while for peripheral collisions
 v₃ is consistent with zero below 14.5 GeV
- v₃ scaled by n_{ch}, local minima at 7—20 GeV. (Softening of equation of state?)

High pT Hadron Suppression

- Deconfined state of dense medium at RHIC top energy and LHC.
- Enhanced high pT (>2 GeV/c) production at lower energies.

Higher Moments of Conserved Quantities

- Susceptibilities and correlation length diverse near critical point
- Direct link between theory and moments of distributions

$$\frac{\chi_2^i}{\chi_1^i} = (\sigma^2/M)^i = \frac{c_2^i}{c_1^i}$$

$$\frac{\chi_3^i}{\chi_2^i} = (S\sigma)^i = \frac{c_3^i}{c_2^i}$$

$$i=B,Q,S$$

Net-Charge, 0-5%, uncorrected Au+Au collisions $\sqrt{s_{\rm NN}}$ = 14.5 GeV 0.2 < $p_{\rm T}$ (GeV/c) < 2.0 |n| < 0.5 STAR Preliminary 10² 10 1 -100 -50 0 50 100

N_{ch} - N_{ch}

Net Proton High Moments

STAR, PRL. 112, 32302(2014)

- For net-proton, from central Au+Au collisions, we observe non-monotonic behavior of susceptibilities
- Need more precise measurement below 20 GeV with finer steps in μ_B and increased rapidity acceptance

Charge Correlations

L or B

External Magnetic Filed: Charge separation, Chiral Magnetic Effect (CME)

Charge correlations vanishes at lower energies where haronic phase become dominant.

STAR, PRL, 113, 142301(2014)

Global A Polarization

Large initial angular momentum: $|L| \sim 10^5 \, \text{h}$ in non-central collisions Fluid vorticity may generate **global polarization**

Using Lambdas:

Self –analyzing decay => preferentially emitting daughter protons in the spin direction

For AntiLambda spin is opposite to anti-proton direction

Global A Polarization

Acceptance integrated polarization

$$\overline{P}_{H} = \frac{8}{\pi \alpha} \frac{\langle \sin(\phi_{p}^{*} - \Psi_{EP}^{(1)}) \rangle}{R_{EP}^{(1)}}$$

- First clear positive signal of global polarization in heavy ion collisions
- Both Lambdas and AntiLambdas show positive polarization.
- Allows Model-dependent estimate of B-field and hot and dense medium vorticity

√s _{NN} (GeV)	7.7	11.5	14.5	19.6	27	39
٨	3.6σ	3.5σ	2.4σ	3.1σ	3.1σ	1.2σ
anti-∧	-	2.1σ	1.1σ	2.4σ	3.0σ	1.7σ

The STAR Upgrades and BES Phase II

Fixed Target Program with STAR

Baryon Chemical Potential μ_{B}

- Extend energy reach to overlap/complementary AGS/FAIR/JPARC
- Real collisions taken in run 14 and results (K. Meehan @ QM15 & WWND16)
- Upgrades (iTPC+eTOF+EPD) crucial
- Unprecedented coverage and PID for Critical Point search in BES-II
- Spectra, flow, fluctuations and correlations

Summary/Outlook

- Spanning a range of µB that could contain features of the QCD phase diagram.
- Observed signatures consistent with disappearance of parton dominated regime.
- Indicators pointing towards a softening of the equation of state which is possible evidence for a first order phase transition.
- Critical phenomena signal from higher moment fluctuations (Statistically demanding)
- Charge separation signal disappears at lower energy.
- First measurement of non-zero global hyperon polarization in heavy ion collisions.
- Beam Energy Scan II with fixed target program
 Many measurements in BES-II will allow us to pin down the location of a rapid transition in signals:
 - HBT, v_n, Kurtosis, chirality (di-lepton, charge separation)

BACKUP

Planned BES II Measures

Collision Energies (GeV):	7.7	9.1	11.5	14.5	19.6			
Chemical Potential (MeV):	420	370	315	260	205			
Observables	Millions of Events Needed							
R_{CP} up to p_T 4.5 GeV	NA	NA	160	92	22			
Elliptic Flow of ϕ meson (v_2)	100	150	200	300	400			
Local Parity Violation (CME)	50	50	50	50	50			
Directed Flow studies (v_1)	50	75	100	100	200			
asHBT (proton-proton)	35	40	50	65	80			
net-proton kurtosis ($κσ^2$)	80	100	120	200	400			
Dileptons	100	160	230	300	400			
Proposed Number of Events:	100	160	230	300	400			