Measurement of the $\bar{B}^0 \rightarrow D^{*-} \pi^+ \pi^- \pi^+$ decay branching fraction

Alberto Lusiani
Scuola Normale Superiore and INFN, sezione di Pisa
on behalf of the BABAR Collaboration

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS
AUGUST 3 - 10, 2016
CHICAGO
experimental discrepancy on $\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau)$ w.r.t. SM prediction

- $BABAR$, Belle and LHCb have measured $R[D^{(*)}] = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_\ell)}$

- combining all results, 4.0σ discrepancy w.r.t. $R^{(*)}_{SM}$ (HFAG Winter 2016)

continues on next slide ⇒
Improve experimental precision on $\mathcal{B}(\bar{B}^0 \rightarrow D^{*+}\tau^-\bar{\nu}_{\tau})$ at hadronic collider

- existing LHCb measurement selects $\bar{B}^0 \rightarrow D^{*+}\tau^- (\rightarrow \mu\bar{\nu}_{\mu}\nu_{\tau})\bar{\nu}_{\tau}$
- can improve measuring $\mathcal{B}(\bar{B}^0 \rightarrow D^{*+}\tau^- (\rightarrow \pi\pi\pi\nu_{\tau})\bar{\nu}_{\tau})$ at hadronic collider

Normalization branching fraction $\mathcal{B}(B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+)$

- hadronic collider \Rightarrow normalization branching ratio needed to reach required precision
 - similar topology
 - well measured in absolute value
- $\mathcal{B}(B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+)$
 - $\mathcal{B} = (7.0 \pm 0.8) \cdot 10^{-3}$ PDG 2015 (11.4% precision)
 - $\mathcal{B} = (7.27 \pm 0.50) \cdot 10^{-3}$ LHCb, PRD 87 092001 (2013): (8.8% precision)
 - not in PDG average
 - [actually, LHCb measures $\mathcal{B}(B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+)/\mathcal{B}(B^0 \rightarrow D^{*-}\pi^+)$]
- cannot get competitive result with present uncertainties on $\mathcal{B}(B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+)$
- \Rightarrow improved precision measurement of $\mathcal{B}(B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+)$ by BABAR
B* detector at PEP-II, SLAC National Accelerator Laboratory

Measurement of \(\mathcal{B}(\bar{B}^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+) \)

Main focus: study of *CP* violation in *B* mesons
Measurement of $\mathcal{B}(\bar{B}^0 \rightarrow D^* \pi^+ \pi^- \pi^+)$

BABAR: CM energy, collected luminosity

center-of-mass energies

<table>
<thead>
<tr>
<th>$\Upsilon(nS)$ resonances (CUSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{CM}[\text{GeV}]$</td>
</tr>
<tr>
<td>9.44</td>
</tr>
<tr>
<td>9.46</td>
</tr>
<tr>
<td>10.00</td>
</tr>
<tr>
<td>10.02</td>
</tr>
<tr>
<td>10.34</td>
</tr>
<tr>
<td>10.37</td>
</tr>
<tr>
<td>10.54</td>
</tr>
<tr>
<td>10.58</td>
</tr>
<tr>
<td>10.62</td>
</tr>
</tbody>
</table>

Integrated luminosity over time

<table>
<thead>
<tr>
<th>Integrated Luminosity [fb$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivered Luminosity</td>
</tr>
<tr>
<td>Recorded Luminosity</td>
</tr>
<tr>
<td>Recorded Luminosity $\Upsilon(4S)$</td>
</tr>
<tr>
<td>Recorded Luminosity $\Upsilon(3S)$</td>
</tr>
<tr>
<td>Recorded Luminosity $\Upsilon(2S)$</td>
</tr>
<tr>
<td>Off Peak</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\mathcal{L}(\text{fb}^{-1})$</th>
<th>events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Upsilon(4S)$</td>
<td>424 $\cdot 10^6$</td>
</tr>
<tr>
<td>$\Upsilon(3S)$</td>
<td>28 $\cdot 10^6$</td>
</tr>
<tr>
<td>$\Upsilon(2S)$</td>
<td>14 $\cdot 10^6$</td>
</tr>
<tr>
<td>off-peak</td>
<td>48</td>
</tr>
</tbody>
</table>

$e^+ e^- \rightarrow c\bar{c}$ $\sim 650 \cdot 10^6$

$e^+ e^- \rightarrow \tau^+ \tau^-$ $\sim 450 \cdot 10^6$

large clean data sample

data-taking ended in April 2008
Measurement of $\mathcal{B}(\bar{B}^0 \rightarrow D^{*-} \pi^+ \pi^- \pi^+)$

Decay chain reconstruction

- data sample: $e^+ e^-$ collisions, $424.2 \pm 1.8 \text{fb}^{-1}$ luminosity, $(470.9 \pm 2.8) \cdot 10^6 \ B\bar{B}$ pairs

- reconstruct $\bar{D}^0 \rightarrow K^+ \pi^-$ candidates from
 - 1 positive-charged identified K
 - 1 negative-charged track, assumed to be a π (no pion identification)
 - candidate $m(K\pi)$ must match nominal $m(D^0)$ within 20 MeV

- reconstruct $D^{*-} \rightarrow \bar{D}^0 \pi^-$ candidates from
 - 1 \bar{D}^0 candidate
 - 1 negative-charged track with $p < 0.45$ GeV
 - $D^{*-} \rightarrow \bar{D}^0$ candidates mass difference must lie between 0.1435 and 0.1475 GeV

- reconstruct $\bar{B}^0 \rightarrow D^{*-} \pi^+ \pi^- \pi^+$ candidates from
 - 1 D^{*-} candidate
 - 3 tracks with total charge $+1$ (no pion identification)
 - candidate $E(\bar{B}^0)$ must match $\sqrt{s}/2$ within 90 MeV

- all remaining objects: rest-of-event (ROE)
Suppression of non-$B\bar{B}$ backgrounds

- multilayer perceptron (MLP) classifier with 9 variables, in center-of-mass (CM) frame
 - cosine of angle B^0 decay products thrust axis w.r.t. beam axis
 - sphericity of B^0 decay products
 - thrust of the ROE
 - $\sum p_i$ in ROE
 - $\sum (3\cos^2 \theta_i - 1)p_i$ in ROE
 - cosine of angle of B^0 decay products thrust axis w.r.t. ROE thrust axis
 - cosine of angle of B^0 decay products sphericity axis w.r.t. ROE thrust axis
 - 2nd-order Fox-Wolfram moment using all re-constructed particles
 - cosine of the angle of the event thrust axis w.r.t. the beam axis

- cut on MLP output, retains 80% of $B\bar{B}$ events and rejects 69% of non-$B\bar{B}$ events
Signal yield and fit on $m_{ES} = \sqrt{s/4 - p_B^2}$

m_{ES}: data, simulation and fit on data

- **Unbinned extended max. likelihood fit**
 - Signal: Crystal Ball function
 - Shape parameters from MC
 - Fit mean, width & normalization
 - Non-peaking background: ARGUS f.
 - Fit normalization & curvature param.
 - Peaking backgrounds: 2 Gaussians
 - All parameters fixed on MC
 - 1445 ± 1272 from $B^0 \bar{B}^0$
 - 592 ± 121 from $B^+ B^-$

Fit results

- Number of signal events: 17767 ± 324 candidates
Background-subtracted 3 pion invariant mass distribution

- background-subtracted 3 pion mass distribution:
 - distribution of events in signal region
 - subtracted with distribution of events in sideband region normalized to the events in the fitted background in the signal region
- regions: signal $5.273 < m_{ES}[\text{GeV}] < 5.285$ sideband $5.240 < m_{ES}[\text{GeV}] < 5.270

Background subtraction region (on the m_{ES} plot of previous page)
Background-subtracted 3 pion invariant mass distribution (2)

3 pion mass distribution

![Graph showing the 3 pion mass distribution with peaks at certain masses.]

- dominated by a_1 resonance
- peak at ~ 2 GeV from $\bar{B}^0 \rightarrow D^{*-} D^+_s (\rightarrow 3\pi)$ (expected dominant exclusive contribution)
- hint of $\pi(1800)$ contribution
- (this study does not aim at studying the structure of this distribution)

$m(a^+_1) = 1230 \pm 40 \text{ MeV/c}^2$ (PDG)
Branching fraction determination

\[\mathcal{B} = \frac{N_{\text{signal}}}{\epsilon \cdot \mathcal{B}(D^{*-} \rightarrow D^0 \pi^-) \cdot \mathcal{B}(\bar{D}^0 \rightarrow K^+ \pi^-)} \]

- efficiency \(\epsilon \)
 - estimated in Monte Carlo as function of \(m(3\pi) \)
 - corrected for data \(m(3\pi) \) distribution

Measurement / subtraction of exclusive contribution \(\bar{B}^0 \rightarrow D^{*-} D^+ (\rightarrow 3\pi) \)

- the yield of \(\bar{B}^0 \rightarrow D^{*-} D^+ (\rightarrow 3\pi) \) is measured by computing the excess of candidates in the interval 1.9–2.0 GeV of the \(3\pi \) mass distribution over the extrapolation of the neighbouring bins
Systematics

- 2.4% Fit algorithm and peaking backgrounds subtraction
 ▶ normalization, mean & width of the two Gaussians for $B^0 \bar{B}^0$ and $B^+ B^-$ peaking backgrounds, determined by Monte Carlo
 ▶ signal’s Crystal Ball PDF cutoff and power parameters (fixed on Monte Carlo)
- 2.0% Track-finding
 ▶ uncertainty on track efficiency from BABAR studies on data control samples
- 1.7% 3π invariant mass modeling
 ▶ 100% of the shift in efficiency when going from MC to data for the 3π mass distribution
- 0.7% 3π invariant mass sideband subtraction
 ▶ background subtraction uncertainty, estimated in Monte Carlo
- 1.3% D^{*+} and \bar{D}^0 branching fractions uncertainties (PDG 2015)
- 1.2% $\mathcal{B}(\Upsilon(4S) \to B^0 \bar{B}^0)$ uncertainty (PDG 2015)
- 1.1% K identification, as estimated by BABAR using data control samples
- 0.9% signal efficiency Monte Carlo statistics
- 0.6% estimate of the number of $\Upsilon(4S) \to B \bar{B}$ decays
- 4.3% total
Results

- $\mathcal{B}(\bar{B}^0 \to D^{*-} \pi^+ \pi^- \pi^+) = (7.37 \pm 0.11 \pm 0.31) \cdot 10^{-3}$
 - total uncertainty 4.5%, to be compared with 11.4% in PDG 2015
 - includes exclusive contributions like $B^0 \to D^{*-} D_s^+ (\to \pi^+ \pi^- \pi^+)$

- $\mathcal{B}(\bar{B}^0 \to D^{*-} \pi^+ \pi^- \pi^+ \text{ (ex. } D_s^+ \to \pi^+ \pi^- \pi^+)) = (7.26 \pm 0.11 \pm 0.31) \cdot 10^{-3}$

- to be submitted to PRD

Thanks for your attention
Measurement of $B(\bar{B}^0 \to D^{*-}\pi^+\pi^-\pi^+)$
• measurements of $R^{(*)} = \frac{\mathcal{B}(B \to D^{(*)} \tau^- \bar{\nu}_\tau)}{\mathcal{B}(B \to D^{(*)} \ell^- \bar{\nu}_\ell)}$

 ▶ HFAG Winter 2016 averages,
 http://www.slac.stanford.edu/xorg/hfag/semi/winter16/winter16_dtaunu.html