

Higgs off-shell effects at NLO

Raoul Röntsch

KARLSRUHE INSTITUTE OF TECHNOLOGY

ICHEP 2016, Chicago

Fabrizio Caola, Matthew Dowling, Kirill Melnikov, R.R., Lorenzo Tancredi JHEP **1607** 087, arXiv:1605.04610

Higgs Off-shell Behavior

- Higgs properties (mass, couplings, CP state) probed using onshell Higgs
- However, 10% of events in $H \rightarrow VV$ (V=W,Z) are above $2m_V$ threshold (Kauer, Passarino '12)
- Strong destructive interference at high energies probe unitarizing behavior of Higgs (connected to EWSB)
- Independent of Higgs width
 indirect constraint on Higgs width (Caola, Melnikov '13)

Campbell, Ellis, Williams '13

Indirect constraints on Higgs width

- ATLAS & CMS find $\Gamma_{H} < 22-26~MeV$
- Compared with ~ 1 GeV direct constraint
- However:
 - Model dependent:
 - Assume same couplings on-shell and off-shell
 - Can (usually) be validated
 - QCD corrections:
 - Interference effects known at LO only NLO corrections expected to be large
 - Current approximated by known signal k-factors unclear if this is justified

Obtain NLO QCD corrections separately for signal, background and interference terms

Higgs Off-shell Effects at LO

Amplitudes (incl. mass dependence) well known

Glover, v.d. Bij '89; Matsuura, v.d. Bij '91; Zecher, Matsuura, v.d. Bij '94; Binoth, Kauer, Mertsch'08; Campbell, Ellis, Williams '11, '14

ICHEP 2016 Chicago, 08/04/2016

Higgs Interference Effects at NLO

Spira, Djouadi, Graudenz, Zerwas '95; Harlander, Kant '05; Aglietti, Bonciani, Degrassi, Vicini '07; Ellis, Hinchliffe, Soldate, v.d. Bij '88; Caola et al '15, v. Manteuffel, Tancredi '15 Hagiwara, Kuruma, Yamada '91; Campbell, Ellis, Zanderighi '07; v.d. Bij, Glover '89;

ICHEP 2016 Chicago, 08/04/2016

$gg \rightarrow (H) \rightarrow ZZ$: Top Mass Expansion

Expand in s/m_t^2

- Keep terms to $\left(s/m_t^2\right)^4$
- Valid for partonic energies $s \lesssim 4m_t^2$

Restricted to

 $m_{4\ell} \le 2m_t$ $p_{T,i} < 150 \text{ GeV}$

(Cannot probe unitarization effects)

ICHEP 2016 Chicago, 08/04/2016

Parameters

- $gg \rightarrow ZZ \rightarrow e^+e^-\mu^+\mu^-$ at 13 TeV LHC
- Dynamical scale $\mu_F = \mu_R = \{m_{4\ell}/4, m_{4\ell}/2, m_{4\ell}\}$
- Minimal cuts:
 - 150 GeV $\leq m_{4\ell} \leq 340$ GeV
 - $p_{T,j} < 150 \text{ GeV}$
 - 60 GeV $\leq m_{\ell\ell} \leq 120$ GeV

$gg \rightarrow (H) \rightarrow ZZ$ Results: Cross Sections

$\sigma_{\rm LO}^{\rm signal} = 0.043^{+0.012}_{-0.009} ~{\rm fb},$	$\sigma_{\rm NLO}^{\rm signal} = 0.074^{+0.008}_{-0.008} ~\rm{fb}$
$\sigma_{\rm LO}^{\rm bkgd} = 2.90^{+0.77}_{-0.58} \ {\rm fb},$	$\sigma_{\rm NLO}^{\rm bkgd} = 4.49^{+0.34}_{-0.38}~{\rm fb}$
$\sigma_{\rm LO}^{\rm intf} = -0.154^{+0.031}_{-0.04} ~{\rm fb},$	$\sigma_{\rm NLO}^{\rm intf} = -0.287^{+0.031}_{-0.037} \; {\rm fb}$
$\sigma_{\rm LO}^{\rm full} = 2.79^{+0.74}_{-0.56} \text{ fb},$	$\sigma_{\rm NLO}^{\rm full} = 4.27^{+0.32}_{-0.35} \text{ fb},$

- Destructive interference ~ 5%
 - $\sim 4 \times$ larger than signal, order of magnitude smaller than background
 - Can use specialized cuts needed to enhance relative to signal and background
- Scale uncertainty: 20%-30% at LO, 10% at NLO
- $K_{\text{sigl}} = 1.72$ $K_{\text{bkgd}} = 1.55$ $K_{\text{intf}} = 1.65 \simeq \sqrt{K_{\text{sigl}} K_{\text{bkgd}}}$

ICHEP 2016 Chicago, 08/04/2016

$gg \rightarrow (H) \rightarrow ZZ$ Results: Mass distributions

- Differential k-factors relatively flat...
- Except for interference near $2m_z$ threshold

ICHEP 2016 Chicago, 08/04/2016

$gg \rightarrow (H) \rightarrow ZZ$ Results: Differential k-factor

 Massless loop dominates near 2m_z threshold, drives k-factor behavior

ICHEP 2016 Chicago, 08/04/2016

Comparison with similar work

Campbell, Czakon, Ellis, Kirchner, arXiv:1605.01380

- Only interference contribution considered
- On-shell Z bosons, so $m_{ZZ}>2m_Z$
- Massive two-loop amplitudes computed in mass expansion to $(s/m_t^2)^6$
- Massive real emission amplitudes computed exactly
- Results extended beyond 2m_t threshold using Padé approximations

Qualitatively similar behavior of k-factors near $2m_z$ threshold

$gg \rightarrow (H) \rightarrow WW$

- Analogous to $gg \rightarrow (H) \rightarrow ZZ$
- Mass expansion more complicated since top and bottom quarks mix
 in loop
- \rightarrow neglect 3rd generation altogether
 - Comparable to massless contribution at low-intermediate $m_{\tau,WW}$
 - Dominate at high $m_{\tau,WW}$
- Partial results only

- $gg \to W^+W^- \to \nu_e e^+ \mu^- \bar{\nu}_\mu$
- No kinematic cuts imposed
- Scales as for *ZZ*

ICHEP 2016 Chicago, 08/04/2016

$gg \rightarrow (H) \rightarrow WW$ Results: Cross Sections

Destructive interference ~ 2%

- Higgs peak present \rightarrow interference smaller than signal and background
- Scale uncertainty reduced by factor ~ 2
- $K_{\text{sigl}} = 1.68$ $K_{\text{bkgd}} = 1.53$ $K_{\text{intf}} = 1.85$
 - \rightarrow fairly close to geometric mean

$gg \rightarrow (H) \rightarrow WW$ Results: Mass distributions

- Differential k-factors relatively flat...
- ... except for interference near $2m_w$ threshold as in ZZ case

[▲] $gg \rightarrow (H) \rightarrow WW$ Results: Estimating effect of 3rd generation

- As in *ZZ* case, enhancement from massless loops
- 3rd generation loops give relatively flat differential kfactor
- \rightarrow estimate by using LO results scaled by approximate k-factor

 $K_{\rm sigl}K_{\rm bkgd}$

ICHEP 2016 Chicago, 08/04/2016 Raoul Röntsch (KIT) Higgs off-shell effects at NLO

15

Conclusions

- Computed NLO corrections to $gg \rightarrow ZZ$ and $gg \rightarrow WW$, focusing on offshell Higgs interference effects
- Difficulty of computing two-loop massive corrections
 - \rightarrow top mass expansion for ZZ
 - \rightarrow neglect 3rd generation for WW
- ZZ in window 150 GeV $\leq m_{4\ell} \leq 340$ GeV
 - Moderate k-factors ~ 1.6-1.7
 - $K_{\text{intf}} \simeq \sqrt{K_{\text{sigl}} K_{\text{bkgd}}}$ except near $2m_z$ threshold driven by massless amplitudes
- *WW*:
 - Interference k-factor slightly larger than signal and background k-factors
 - Effect of 3rd generation at NLO approximated assuming uniform contribution to kfactor

THANK YOU!