PERFORMANCES OF THE NA62 RICH DETECTOR

Francesca Bucci - CERN and INFN, Sezione di Firenze on behalf of the NA62 RICH working group

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

THE NA62 CHALLENGE

(for more details see the talk of M. Moulson in the Quark and Lepton Flavor Physics parallel session)

Measure the BR of the ultra-rare Kaon decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with 10% accuracy collecting ~100 SM events in 3 years of data taking

$$BR_{SM}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (8.4 \pm 0.6) \times 10^{-11}$$

[Buras et al. arXiv:1503.02693], [Brod et al. Phys. Rev. D 83,034030 (2011)]

Suppression of decay channels with BR $\geq 10^{10}$ BR(K⁺ $\rightarrow \pi^+ \nu \nu$) and similar experimental signature: BR(K⁺ $\rightarrow \mu^+ \nu$)=63.4%

THE RICH DETECTOR

- μ contamination in the π sample $\leq 1\%$ between 15 and 35 GeV/c
- measurement of the π crossing time with a resolution ~100 ps
- L0 trigger for a charged track

VESSEL AND RADIATOR

RICH vessel has an overall volume of 200 m³

- Vacuum proof tank 17 m long in structural steel
- 4 cylindrical sections of decreasing diameter $(4\rightarrow 3.4 \text{ m})$ and different lenghts
- beam pipe (Ø 168 mm) going through
- thin Al entrance and exit windows

- Neon slightly above p_{atm}
- $(n-1) = 62.8 \times 10^{-6} \text{ at } \lambda = 300 \text{ nm}$
- $p_{threshold} = 12.5 \text{ GeV/c for } \pi$
- good light trasparency
- low chromatic dispersion

RICH performances rather immunes to impurities: no gas renewal

MIRROR LAYOUT

A mosaic of 20 spherical mirrors used to reflect the Cherenkov light

- 18 hexagonal mirrors (35 cm side)
- 2 semi-hex with pipe hole

2.5 cm thick glass coated with Al Thin dielectric film added

Optical parameters

- \circ R=(34.0±0.2) m
- Average reflectivity ~ 90% (195-650 nm)
- o $D_0 \le 4 \text{ mm}$

MIRRORS SUPPORT AND ALIGNMENT SYSTEM

Al honeycomb structure, 5 cm thick, divided in two halves

- Mirrors supported by a dowel inserted in the back of the mirror
- Two aluminium ribbons keep the mirror in equilibrium and allow its orientation
- A third vertical ribbon is used to avoid mirror rotations

6

Piezo motors allow a remotely controlled orientation

PHOTO-DETECTION SYSTEM

Reflected light is collected by 1952 PMTs with 18 mm pixel size

PMTs are assembled in a compact hexagonal packing

- Hamamatsu R7400U-03
- UV glass window, $16 \text{ mm} \varnothing (8)$ mm active \emptyset)
- Custom made HV divider
- Sensitivity range 185-650 nm (420 nm peak)
- Gain 1.5×10⁶ at 900 V
- Q.E. $\sim 20\%$ at peak
- 280 ps time jitter (FWHM)
- Winston cones with aluminized mylar foil used to optimize light collection
- Quartz windows separate neon from air

TIME RESOLUTION

The RICH event time resolution is $\sim 70 \text{ ps}$

The intrinsic RICH time resolution

- Detected photons of one Cherenkov ring are divided in two groups
- Time difference of each group is plotted
- Time resolution of the full ring is $\sim 0.5 \times \sigma$

Time difference btw the average time of a Cherenkov ring and the KTAG time

Remaining systematic uncertainties in the time offsets

RICH PARTICLE IDENTIFICATION

Samples of charged pions, muons and electrons selected using calorimetric and spectrometer information

Number of hits per Cherenkov ring as a function of particle momentum

The Cherenkov ring radius as a function of momentum

π-M SEPARATION

For 80% π ID efficiency a 1% μ mis-ID efficiency is observed

Squared particle mass reconstructed using the velocity from the RICH and the momentum from the spectrometer

Pion identification efficiency as a function of muon mis-identification

Preceding results are quoted in the NA62 detector paper in preparation

MIRRORS ALIGNMENT

In 2014 and 2015 the RICH mirrors alignment was not optimal Remotely align mirros using information from 2016 data

- Select rings fully contained in a single mirror
- Consider the reflection of the track off the mirrors and extrapolate the reflected track to the PMT disk
- Compare the position of the ring center on the PMT disk with the position predicted by the extrapolation

All mirrors aligned within 1 mm with respect to the reference

2016 Preliminary Results

For 90% π ID efficiency a 0.8% μ mis-ID efficiency is observed

CONCLUSIONS

- The NA62 RICH is a far demanding object
- The detector was constructed and fully commissioned in time for the NA62 data taking
- The measured performances fulfill all the requirements:
 - Time resolution ~ 70 ps
 - Muon mis-ID efficiency < 1% for 90% pion ID efficiency

FRONT-END AND READ-OUT SYSTEM

RICH front-end

- Custom-made current amplifiers with differential output
- NINO chips used as discriminators
- o 64 boards
- Each boards has 32 channels

RICH read-out:

- 2 128 channels TDC daughter Boards (TDCB), each one housing 4 CERN HPTDC (High Performance TDC)
- 5 TEL62 mother boards (4 for the 2000 PMTs, 1 for the multiplicity read-out used to produce the L0 trigger), each one housing 4 TDCBs

IDEAL PROCEDURE

- The laser is placed in the Center of Curvature C of the mirror mosaic
- The reflected laser beam must come in the same position as the source
- Changing the laser beam angle with C as pivot, all the mirrors of one mosaic half can be illuminated and aligned

What about if C is not accessible?
Put in C the **optical image** of the laser