



# Recent results on open and closed heavy flavor from PHENIX at RHIC

Takashi HACHIYA
RIKEN BNL Research Center
for the PHENIX collaboration



#### Introduction - why heavy flavor?

- Heavy Flavors (charms and bottoms) in HI collisions
  - HF is created at the early stage of the collisions
    - Mainly initial hard scattering due to large mass (Mc~1.2, Mb~4.5GeV)
    - Production can be calculated by pQCD

Calibrated probe



#### Introduction - why heavy flavor?

- Heavy Flavors (charms and bottoms) in HI collisions
  - HF is created at the early stage of the collisions
    - Mainly initial hard scattering due to large mass (Mc~1.2, Mb~4.5GeV)
    - Production can be calculated by pQCD
  - Passing through the hot and dense medium (QGP)
    - Suffer the energy loss, flow effect, and dissociation of pairs
    - Sensitive to the medium property



Heavy flavor is a clean probe to study QGP property

probe

Calibrated



#### PHENIX Silicon Vertex Detector (VTX &FVTX)



- **VTX** in 2011
  - |y| < 1.2,  $\phi \sim 2\pi$
  - 4 layers (2 pixels + 2 strips)
  - 50um pixel
- **FVTX** in 2012
  - 1.2<|y|<2.2,  $\phi$ =2 $\pi$
  - 4 layers (mini-strip)
  - 75um strip





- To measure bottoms & charms
  - Measure DCA by VTX and FVTX
  - Utilize difference of decay lengths
  - B<sup>0</sup>: 455 μm, D<sup>0</sup>: 123 μm

#### Topics:

- VTX result : Separated bottom and charm electrons at <u>mid-rapidity</u> in Au+Au200GeV
- 2. FVTX result : Open bottom production via B→J/ψ at <u>forward rapidity</u> in Cu+Au 200GeV
- 3. FVTX result : CNM effect of  $\psi'$  and  $J/\psi$  in p/d + A

# Inclusive (charm & bottom) Heavy Flavor Electrons in Au+Au 200GeV

Single electrons from inclusive heavy flavor decays shows :

- R<sub>AA</sub>: strong suppression (Ncoll scaling @ low pT)
- v<sub>2</sub>: significant flow

#### Surprising results

HQ expected to be less energy loss and smaller (zero) flow due to heavy mass

- Questions
  - What is the energy loss mechanism for heavy flavor?
    - Radiative vs Collisional losses
  - Mass dependence of energy loss?



2016/8/5 measure bottoms & charms separately

#### DCA for Bottom/Charm separation





- First VTX results : Au+Au200
- DCA distributions :
  - Several backgrounds:
    - Conversions, Dalitz decays, J/psi & Ke3 decays, mis-ID hadrons, mis-tracking
  - Bottom & Charm signal
- Unfolding for B/C separation
  - DCA<sub>T</sub> in 2011 & yield in 2004
  - Bayesian inference technique
  - Parameters = yield of charm/bottom hadrons

#### Charm hadrons from unfolding





- First VTX results: Au+Au200
- DCA distributions :
  - Several backgrounds:
    - Conversions, Dalitz decays, J/psi & Ke3 decays, mis-ID hadrons, mis-tracking
  - Bottom & Charm signal
- Unfolding for B/C separation
  - DCA<sub>T</sub> in 2011 & yield in 2004
  - Bayesian inference technique
  - Parameters = yield of charm/bottom hadrons
- Unfold charm hadron is in good agreement with STAR D<sup>0</sup> measurement







- p+p data is consistent with FONLL
  - Two particle correlation in p+p
- Au+Au shows difference with p+p

#### First result: Bottom and Charm R<sub>AA</sub>

VTX Result



- Bottom and charm are similarly suppressed at high p<sub>T</sub>
- Bottom is less suppressed than charm at  $p_T=3-4$  GeV/c
- First measurement at RHIC energy

#### Topics:

- 1. VTX result : Separated bottom and charm electrons at <a href="mailto:mid-rapidity">mid-rapidity</a> in Au+Au200GeV
- 2. FVTX result : Open bottom production via B→J/ψ at <u>forward rapidity</u> in Cu+Au 200GeV
- 3. FVTX result : CNM effect of  $\psi'$  and  $J/\psi$  in p/d + A

#### First results : $B \rightarrow J/\psi$ in Cu + Au



 $\mu$  DCA<sub>R</sub> from J/ψ decays



- Cu+Au 200GeV in 2012
  - Forward J/psi  $\rightarrow \mu\mu$
- Measure μ DCA<sub>R</sub> from J/ψ decays
  - separate  $B\rightarrow J/\psi$  and prompt  $J/\psi$
  - Utilize difference of decay lengths
  - B $\rightarrow$ J/ $\psi$ : 455  $\mu$ m, Prompt J/ $\psi$ : 0 $\mu$ m
- DCA<sub>R</sub> fits with template shapes of B→J/ψ & prompt J/ψ
- The sum of DCA<sub>R</sub> contributions agrees well with the data

## First results : $B \rightarrow J/\psi$ in Cu + Au





- Cu+Au 200GeV in 2012
  - Forward J/psi  $\rightarrow \mu\mu$
- Measure μ DCA<sub>R</sub> from J/ψ decays
  - separate  $B\rightarrow J/\psi$  and prompt  $J/\psi$
  - Utilize difference of decay lengths
  - B $\rightarrow$ J/ $\psi$ : 455  $\mu$ m, Prompt J/ $\psi$ : 0 $\mu$ m
- DCA<sub>R</sub> fits with template shapes of B→J/ψ & prompt J/ψ
  - The sum of DCA<sub>R</sub> contributions agrees well with the data
- B fraction was determined for both Cu-& Au-going directions
- B fraction is larger than that at LHC because prompt J/ψ is more suppressed at RHIC

## First results : $B \rightarrow J/\psi R_{AA}$ in Cu + Au





$$R_{CuAu}^{B \to J/\psi} = \frac{F_{B \to J/\psi}^{CuAu}}{F_{B \to J/\psi}^{pp} = 0.1} R_{CuAu}^{inc.J/\psi}$$

Assume F(B) in pp =0.1

- B $\to$ J/ $\psi$  R<sub>AA</sub> is consistent with little/no suppression in Cu & Au going directions
  - Consistent qualitatively with bottom electrons at RHIC
  - Same trend with the suppression at LHC
    - less at low pT and more at high pT

#### Topics:

- 1. VTX result : Separated bottom and charm electrons at **mid-rapidity** in Au+Au200GeV
- 2. FVTX result : Open bottom production via B→J/ψ at **forward rapidity** in Cu+Au 200GeV
- 3. FVTX result : CNM effect of  $\psi'$  and  $J/\psi$  in p/d + A

## CNM in $\psi'$ production

# CNM is key to understand charmonia suppression in QGP

- Charmonia would be dissociated in QGP due to color screening but many other effects modify charmonia yield as well
- $\psi'$  and J/ $\psi$  is good tool to study CNM
  - Initial state effects (shadowing, Cronin) should be similar for  $J/\psi$  and  $\psi'$
  - **Final state effect** (breakup) can be different since their different binding energies (=radii)





Measure  $\psi'$  and  $J/\psi$  in different p/d + A

#### $\psi'$ suppression in d+Au 200GeV





- ullet Large suppression of  $\psi'$  is observed in central d+Au
  - Sequential suppression of  $J/\psi$  and  $\psi'$  is seen
  - nPDF & nuclear break up cannot explain

#### $\psi' \& J/\psi$ Suppression in p+A 200GeV





- Larger suppression on  $\psi'$  for A-going and equivalent suppression on both states for p-going direction
  - No collision system dependence is seen

nPDF & nuclear break up cannot explain

#### $\psi' \& J/\psi$ comparison with Model





- Model including co-moving hadrons is qualitatively consistent with the data
  - Sequential suppressions of J/ $\psi$  and  $\psi'$
  - Rapidity dependence of the suppressions

Co-moving hadrons should contributes to  $J/\psi$  suppression in A+A collisions



±16% global uncertainty on

midrapidity point

rapidity

# Summary







- New bottom results
  - First result of bottom suppressions from both VTX and FVTX
  - Bottoms in Au+Au 200 GeV
     similarly suppressed as charms at high pT
     less suppressed at low pT
  - Little suppression for B  $\to$  J/ $\psi$  at low pT in Cu+Au 200 GeV
- $\psi'$  suppression in CNM
  - Sequential dissociation of  $\psi'$  and  $J/\psi$  is observed at mid. and backward rapidity in 200 GeV p/d + A collisions
  - Co-moving hadrons is important to understand quarkonia suppression

#### Outlook

- VTX / FVTX silicon detector enables precise open/closed heavy flavor measurements
- 10x Larger statistics Au + Au and good p+p/p+A dataset in 2014-2016. New results will come soon. Stay tuned!

# Backup

## Outlook: Heavy Flavor



- Large statistics in 2014 + 2016 Au+Au datasets
  - 10 ~ 20 times enables to study with separated bottom/charm
    - Higher pT,
    - centrality dependence
    - Vn
- Good 2015 p+p and p+Au datasets for baseline

# Suppression in d+Au 200GeV



- Large suppression of Psi' is observed in central d+Au
  - Break up in nucleus or co-moving hadrons?
- Model including co-moving hadrons is in good agreement with sequential dissociation of J/psi and Psi' in d+Au collisions
- A model including QGP in d+Au + hadron gas is also in good agreement

#### Comparison with LHC



- Similar suppression of Psi' and J/psi at LHC
- But large suppression even at forward y
  - Breaking up by comover may be significant due to larger particle multiplicity

# Psi' / J/psi ratio in pp



- The ratio is independent of collision energy
  - Even cc cross section changes with collision energy

#### Quarkonia:

# NEW

#### Backward: Al-going direction



#### central collision



Forward: p-going direction



Backward: Au-going direction



central collision



Forward: p-going direction



#### RAA for open and closed heavy flavor



#### • In the most central collision:

- 1.  $R_{dA}$  of HF muon and J/ $\psi$  are consistent at forward rapidity
- 2. however, clearly different at backward rapidity
- 3. charm production is enhanced but  $J/\psi$  production is significantly suppressed due to nuclear breakup inside dense comovers at backward rapidity
  - Shadowing (nPDF) should be similar for single and J/psi
  - Final state effect is related with multiplicity



#### Background: Mis-associated with VTX



- The BG widely spreads with flat shape
  - Large DCA<sub>L</sub> has mostly the BG.

- The BG is studied by embedding e into data
  - Embedding reproduces the BG nicely

 Use DCA<sub>T</sub> distribution with 0.13<|DCA<sub>L</sub>|<0.18cm</li>

#### Unfolding: Bayesian inference

- Purpose: extract parent B/C hadron yield
  - B/C hadron based on Bayesian inference
  - MCMC(Markov chain Monte Carlo) sampling
  - Obtain probability of B/C yield for pT bins





#### Validation: Unfolding & Data



- Unfolding is consistent with electron data for yield and DCA<sub>T</sub>
  - Diff likelihood:  $\Delta LL = -0.6 \sim 3.8 \, \sigma$

# Full probability distribution



#### Unfold Charm and Bottom hadron spectra



- Bottom & Charm hadron yield are successfully extracted
  - Whole rapidity
- First bottom hadron measurement ICHEP2016 CHICAGO, Takashi HACHIYA

#### Comparison with Model



- Models are not consistent with data
  - Models shows monotonic and non-monotonic behavior
  - Data can constrain the models
- Need higher statistics to improve error at high p<sub>T</sub>
  - Available from 2014-2016: 10x more stat & good detector condition
  - New data will show the centrality dependence and VN measurement as well

# Systematic uncertainty on unfolding

- Systematic uncertainty is obtained by changing the inputs within systematic uncertainty for each component.
- Type of uncertainties
  - 1. Unfold uncertainty: Due to data statistics
  - Spectra uncertainty : Invariant HF spectrum
  - 3. High-mult Bkg: Mis-associated bg
  - 4. FNP: normalization on photonic BG
  - 5. Ke3: Ke3 normalization
  - 6.  $\alpha$ : Strength of smoothness
  - 7.  $\theta_{prior}$ : Reference hadron shape for smoothness



## Effect on Baryon enhancement

- A baryon enhancement was observed in strange and non-strange hadrons. Same (or similar) enhancement may happen in heavy quarks.
- We tested how the enhancement change the bottom electron fraction
  - Input: STAR Λ/Ks in AuAu & pp
- Result
  - Bottom fraction was changed but within systematic uncertainty
  - We did not include this difference as an additional systematic uncertainty







#### First Results : B-meson → J/ψ in Cu+Au 200 GeV



DCA<sub>R</sub> Distributions. BG is subtracted for clarity

#### What NEW on Open Heavy Flavor?



#### Two sources of background:

- Di-muon combinatorial
- FVTX-MuTr mismatches
  - Coming from incorrectly matching a MuTr track to the FVTX stand alone track.
- ccbar

Signal templates and backgrounds are fitted together to extract the  $B \rightarrow J/\psi$  fraction.

## B fraction in pp: World data



B fraction is mostly independent of collision energy

# DCA\_R definition



Projection to X-Y plane at Z=collision vertex

$$DCA_R = \overrightarrow{P_{vtx}} \cdot \frac{\overrightarrow{R}}{||\overrightarrow{R}||}$$



- DCA\_R is the projection of DCA vector to R vector on the vertex plane.
- DCA\_R can be negative if R and P vector goes opposite direction.
- For B->Jpsi which decays at far from vertex, P vector get longer due to Lorentz boost to Z direction. Therefore,

## $J/\psi$ in d+Au 200GeV: CNM effect



- Rapidity  $J/\psi$ 
  - Asymmetric Suppression
    - Stronger @ forward y
  - Nuclear shadowing + cc breakup describes the data
    - favors  $\sigma_{br} = 4mb$

cc breakup: cc loses pair when passing through (cold) nuclei



