

Correlations in small systems with

Igor Lakomov (CERN)

on behalf of the ALICE Collaboration

38th International Conference on High Energy Physics ICHEP-2016 Chicago, USA, 4th August 2016

Outline

ALICE overview CICE OAGLAIGA
Ridges in small systems
LR-correlations in p-Pb
Muon v₂ in p-Pb
MPI in pp and p-Pb

Summary and outlook

ALICE apparatus

I. Lakomov, ICHEP 2016, 04 Aug 2016

Two-particle correlations

ALI-PUB-46224

Nuclear matter effects

I. Lakomov, ICHEP 2016, 04 Aug 2016

Near side ridge

- Near-side ridge seen in small systems at high multiplicity similar to the wellknown feature from Pb-Pb (anisotropic flow).
- What is the origin of this ridge in small systems? Initial or final state effects?

Double-ridge in p-Pb

No near-side ridge seen in 60-100% and similar to pp.

Double-ridge in p-Pb

- ➢ No near-side ridge seen in 60-100% and similar to pp.
- Subtraction is done to "isolate" ridge from jet.

Double-ridge in p-Pb

No near-side ridge seen in 60-100% and similar to pp.

Subtraction is done to "isolate" ridge from jet.

- > Quantified in terms of v_n coefficients.
- > Clear indication of mass ordering for v_2 in p-Pb.
- Resembles Pb-Pb.
- Collective effects in p-Pb?

Long-range correlations (LRC) in p-Pb

LHC beam asymmetry $(E_{Pb}=1.58 \bullet A \text{ TeV}, E_p=4 \text{ TeV}) \Rightarrow |\Delta y|_{cms} = 0.5 \text{ Log}(Z_{Pb}A_p/Z_pA_{Pb}) = 0.465$

Long-range correlations (LRC) in p-Pb

LHC beam asymmetry $(E_{Pb}=1.58 \bullet A \text{ TeV}, E_p=4 \text{ TeV}) \Rightarrow |\Delta y|_{cms} = 0.5 \text{ Log}(Z_{Pb}A_p/Z_pA_{Pb}) = 0.465$

Pb-p

pointing to the primary vertex.

 ➤ Trigger particles from Muon Spectrometer.
 ✓ Composition of parent particles of reconstructed muons varies as a function of p_T.
 ✓ Dominated by Heavy Flavour (HF) at high p_T.
 ➤ Associated particles from central barrel.
 ✓ Tracklets: pair of hits on two SPD layers

 $y_{lab} = 0$ $y_{cms} = 0$

Pb-going direction

Long-range correlations (LRC) in p-Pb

LHC beam asymmetry (E_{Pb} =1.58•A TeV, E_p =4 TeV) $\Rightarrow |\Delta y|_{cms} = 0.5 \text{ Log}(Z_{Pb}A_p/Z_pA_{Pb}) = 0.465$

LRC in p-Pb: double ridge

ALICE

v₂^µ{2PC,sub} in p-Pb

Uncorrelated seeds: yields calculation

Uncorrelated seeds: results

> Number of uncorrelated seeds (MPI) scales linearly with the multiplicity in pp and p-Pb.

Summary

- □ Double ridge and mass ordering of the v_2 measured in p-Pb collisions might indicate some collective effects in p-Pb collisions.
- □ Muon-hadron correlations in p-Pb collisions:
 - ✓ Double ridge extends over 10 units of pseudorapidity.
 - ✓ Inclusive muon v_2 is larger on Pb-going side than p-going side.
 - ✓ AMPT comparison suggests HF v_2 > 0 or different particle composition.
- Number of uncorrelated seeds (MPI) scales linearly with the multiplicity both in pp and p-Pb.
- ♦ High-statistics data from Run 2 is required for more detailed studies, in particular for the MPI analysis and searches of double-ridge in pp if any?

D-h[±] correlations in pp and p-Pb

First measurement of the D-h[±] correlations at the LHC.

- Similar correlation functions for pp @ 7 TeV and p-Pb @ 5.02 TeV.
- Larger statistic is needed for detailed studies (hope to have it in Run 2).

Thank you!

I. Lakomov, ICHEP 2016, 04 Aug 2016

Backup slides

I. Lakomov, ICHEP 2016, 04 Aug 2016

ALICE apparatus

Inner Tracker System (ITS)

- ✓ tracking at low $p_{\rm T}$
- ✓ vertexing

Time Projection Chamber (TPC)

- ✓ main tracking system
- ✓ particle identification (PID)based on the energy loss

Time of Flight (TOF)

✓ PID based on the arrival time

V0

- ✓ V0A (2.8<η<5.1)</p>
- ✓ VOC (-3.7<η<-1.7)</p>
- ✓ trigger, multiplicity selection

Muon Spectrometer

- ✓ tracking chambers (-4<η<-2.5)
- ✓ trigger chambers

