Optical Bifurcation in the Limit of Photon Statistics ICHEP2016

Dr. Carol Scarlett Department of Physics Florida A&M Universtiy

Overview

- Motivation for Axions and Axion Like Particles
- Methods to search for Axions
- Induced splitting creating Bifurcation
- Shifting in a cavity
- Limit of photon statistics random walking starts
- Summary/Future

QCD Vacuum

• QCD Lagrangian contains CP Violating term. However strong interactions conserve CP symmetry:

$$L = \Theta \frac{\alpha s}{8\pi} A^{uva} \tilde{A}^{a}_{uv}$$

$$L = (\Theta - \frac{\phi_f}{f_A}) \frac{\alpha s}{8\pi} A^{\text{uva}} \tilde{A}^{\text{a}}_{\text{uv}}$$

- Peccei & Quinn proposed an axion Field
- QCD ground state (A is the color field strength tensor and A is its dual)

Photon Coupling to B_{ext}

- Previous searches focused on Primokoff Decays
- Diagrams: a) QED Vacuum Polarization b.) Photon Splitting c.) axion real production and d.) axion virtual production

Searches To Date:

Helioscope

Haloscope

• Cavity Regeneration & Vacuum Birefringence

Axion Coupling to Photons

• In an inhomogeneous magnetic field axions-photon coupling leads to the formation of a particle/antiparticle state which causes the beam to split in two

Mirror Cavity Experiments

- Consider the mirror cavity shown below
- To counter the natural divergence of the beam a stable cavity can be constructed using concave mirrors

In A Mirror Cavity

- In a mirror cavity reflection destroys the coupled state
- The returning beams re-couple to axions and continue to split with each entry into the field (each reflection)

Modeling Splitting

• Jones matrices were used to track the photons through the cavity they are defined as follows:

Focusing:

$$\begin{bmatrix} 1 & 0 \\ -1 & 1 \\ \hline f & 1 \end{bmatrix}$$

Propagating:

$$\begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix}$$

Splitting:

$$\begin{bmatrix} 1 & 0 \\ \pm \theta_{split} & 1 \end{bmatrix}$$

Intensity Changes

 Assuming an initial gaussian distribution, the changes in the beam profile due to splitting as a function of position relative to the center of the beam can be calculated:

$$\begin{split} P_D &= Ae^{-\frac{1}{2}\cdot\frac{x^2}{r^2}} \\ P_D^{"} + P_D^{'} &\approx A \cdot \frac{r-\varepsilon}{r} e^{-\frac{1}{2}\cdot\frac{x^2}{r^2}} \cdot e^{+\frac{x^2}{r^2}\cdot\frac{\varepsilon}{r}} \cdot e^{-\frac{\alpha^2}{r^2}} \cdot \cosh(\frac{x^2}{r^2}\cdot\frac{\alpha}{x}) \\ P_D - (P_D^{'} + P_D^{"}) &\approx Ae^{-\frac{1}{2}\cdot\frac{x^2}{r^2}} [1 - \frac{r-\varepsilon}{r} \cdot e^{+\frac{x^2}{r^2}\cdot\frac{\varepsilon}{r}} \cdot e^{-\frac{\alpha^2}{r^2}} \cdot \cosh(\frac{x^2}{r^2}\cdot\frac{\alpha}{x})] \end{split}$$

Central Depletion

• The splitting leads to a drop in the central intensity accompanying an increase in the intensity of the sidebands

Real Parameters

 For actual experiments involving cavities there are stability condition

Cavity	Cavity	Magnetic	VΒ	Laser	Laser	Mirror	Number	$\theta_{\text{split}} \sim 10^{-10}$	Injection
Type	Length	Field	Strength	Wavelength	Energy	Radius	of	$(g_a = 10^{-6})$	Angle
		Length					Bounces		
Confocal	14 m	10 m	200 T/m	1064 nm	1 W	25 m	$1.2 \cdot 10^4$	4 · 10 ⁻¹⁰	1.5 · 10 ⁻² rad
Convex-	14 m	10 m	200 T/m	1064 nm	1 W	25 m,	$1.2 \cdot 10^4$	4 · 10 ⁻¹⁰	1.5 · 10 ⁻² rad
Concaved						-11 m			
Planear-	14 m	10 m	200 T/m	1064 nm	1 W	00	$1.2 \cdot 10^4$	4 · 10 ⁻¹⁰	1.5 · 10 ⁻² rad
Planear									

 As well there are limits on the strength of magnetic fields and gradients that subsequently limit the splitting angle for a given coupling of matter to axion particles

Each Traversal

- With each traversal the splitting occurs
- The simulations allow for a numerical solution to the intensity change as a function of traversal

$$\alpha = \theta_{split} \cdot d \cdot f(n)$$

- Where θ split gives the angle of splitting
- Where d gives the length of the cavity
- Where f(n) must be extracted

60 Traversals for a 1Watt Beam

- A 1 Watt Beam has $\sim 6.25 \times 10^{-18}$ photons
- As the beam returns with the same polarization, with each pass splitting of a single beam into two beams of roughly the same intensity must occur
- After some 60 traversals (2⁺⁶⁰ distributions) the limit of splitting is reached and no new distributions can be created
- Now when a photon gains transverse momentum and moves left there is no photon moving right from the same position the intensity changes no longer scale as a $\sinh(\sim \theta_i \theta_{solit}^2)$ function

The End Of Splitting

- To capture what happens when splitting no longer occurs, a limit was imposed on the total number of rays tracked following splitting
- Some specific scenarios were considered first
 - +/- directed tracks loose/gain momentum
 - Each track couples as a particle shifts left
 - Each track couples as an antiparticle shifts right
- Each ray was given a random positive or negative shift
- Samples of 1000 randomly propagated sets of rays analyzed to understand behavior

Random Change at n=11

• When the tracks are given randomly either + or – momentum at n=11

From Predicted To Random

 The continuous pattern is broken when the splitting behavior ends leading to rapidly changes

Varying Coupling

 The effect becomes linear once the limit of splitting is reached

Depletion vs Shifting

 Comparing Depletion to Shifting, when splitting stops, shows that shifting is more appropriate as coupling decreases

Numerical Observations

- For scenarios that shift tracks by one unit of momentum such that equal distributions of tracks gain (+) or loose (-) momentum, the overall effect is quadratic as with the splitting case
- For some random scenarios the energy shifting departs from the splitting case and gives a significant increase in left-right movement
- The large changes observed show linear behavior with respect to coupling strength

Birefringent Microscopy

- BNL Summer 2016 Detector Measurement
- Null measurement

Birefringent Microscopy

- Detector Measurement + Birefringent Sample 1
- Birefringent Samples Stress induced effects

Birefringence & Noise

Summary

- Splitting leads to a quadratic depletion of the central intensity as well as a quadratic shifting of the beam's center
- The limit of photon statistics ends the process of splitting and gives rise to an energy shifting that has a better than 95.2% probability of behaving linearly
- The energy shifting grows chaotically
- Experiments seeking to observe exotic particles may benefit from such an enhancement in signal strength

Axion Mass

- The calculations for splitting assumed "maximum mixing" or an axion mass at the resonance condition ma = o
- For non-resonance, there is a correction factor:

$$\tan(2 \cdot \varphi) = \frac{2 \cdot Q_M}{Q_{\gamma} - Q_a}$$

Where the parameters are defined:

$$Q_M \approx \omega g_a B^e \approx 1 e v \cdot 10^{-21} e v^{-1} \cdot 1T \cdot 195 \frac{e v^2}{T} \approx 10^{-19} e v^2$$

$$Q_{\gamma} = \omega^2 \frac{7\alpha}{45\pi} \left(\frac{B^e}{B_{crit}}\right)^2 \approx 3.19 \cdot 10^{-23} ev^2$$

$$Q_a = -m_a^2$$

Non-resonance mass factor

- The resonance axion mass is just $m_a = 5.7 \cdot 10^{-10}$
- Accounting for non-resonance, signal strength drops:

Non-resonance measurement

Figure 8: Axion space thus far explored by experimentation and astro-physical observation along with predictions (double solid and dashed lines) for magnetar observations.