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Importance of lattice field theory simulations

✦ lattice simulations are needed to solve the strong dynamics 

✦ naturally suited for models where dark fermion masses are 
comparable to the confinement scale 

✦ controllable systematic errors and room for improvement 

✦Naive dimensional analysis and EFT approaches can miss 
important non-perturbative contributions 

✦NDA is not precise enough when confronting experimental results 
and might not work for certain situations: there are uncontrolled 
theoretical errors

[KEK-Japan]



“Stealth Dark Matter” Model

✦ New strongly-coupled SU(4) gauge sector “like” QCD with a 
plethora of composite states in the spectrum: all mass scales are 
technically natural for hadrons 

✦ New Dark fermions: have dark color and also have electroweak 
charges (W/Z,𝛾) 

✦ Dark fermions have electroweak breaking masses (Higgs) and 
electroweak preserving masses (not-Higgs)  

✦ A global symmetry naturally stabilizes the dark lightest baryonic 
composite states (e.g. dark neutron)

[LSD collab., Phys. Rev. D88 (2013) 014502]

[LSD collab., Phys. Rev. D89 (2014) 094508]

[LSD collab., Phys. Rev. D92 (2015) 075030]

[LSD collab., Phys. Rev. Lett. 115 (2015) 171803]
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✦ Signatures are not dominated by missing energy: DM is not the 
lightest particle! The interactions are suppressed (form factors)

✦ Light meson production and decay give interesting signatures: the 
model can be constrained by collider limits! m𝛱≳90GeV
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The darkness of Composite Dark Matter

[Wikipedia]

[Bagnasco et al., hep-ph/9310290]

Most relevant interaction if constituents have Yukawa 
couplings!

Lowest dimensional operators:
★ magnetic dipole (5) 
★ charge radius     (6) 
★ polarizability       (7)
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Stealth DM Polarizability

Direct detection signal is below the neutrino coherent scattering background for M𝜒≳700GeV
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Figure 12: Left : Neutrino isoevent contour lines (long dash orange) compared with current limits and regions of interest. The
contours delineate regions in the WIMP-nucleon cross section vs WIMP mass plane which for which dark matter experiments
will see neutrino events (see Sec. IIID). Right : WIMP discovery limit (thick dashed orange) compared with current limits
and regions of interest. The dominant neutrino components for different WIMP mass regions are labeled. Progress beyond
this line would require a combination of better knowledge of the neutrino background, annual modulation, and/or directional
detection. We show 90% confidence exclusion limits from DAMIC [55] (light blue), SIMPLE [56] (purple), COUPP [57] (teal),
ZEPLIN-III [58] (blue), EDELWEISS standard [59] and low-threshold [60] (orange), CDMS II Ge standard [61], low-threshold
[62] and CDMSlite [63] (red), XENON10 S2-only [64] and XENON100 [65] (dark green) and LUX [66] (light green). The filled
regions identify possible signal regions associated with data from CDMS-II Si [1] (light blue, 90% C.L.), CoGeNT [67] (yellow,
90% C.L.), DAMA/LIBRA [68] (tan, 99.7% C.L.), and CRESST [69] (pink, 95.45% C.L.) experiments. The light green shaded
region is the parameter space excluded by the LUX Collaboration.

3. Measurement of annual modulation. In the case of
a 6 GeV/c2 WIMP, next generation experiments
could reach sufficiently high statistics to disen-
tangle the WIMP and the neutrino contributions
using the 6% annual modulation rate of dark mat-
ter interactions [54]. However, in the case of hea-
vier WIMPs, very large and unrealistic exposures
would be required to obtain enough events to detect
such predicted annual modulation for cross sections
around 10−48 cm2. Furthermore, the atmospheric
neutrino event rate also undergoes annual modula-
tion due to the change in temperature of the atmos-
phere throughout the year [50]. A dedicated study
taking into account systematic uncertainties in the
neutrino fluxes and their modulations is required
to assess the feasibility of annual modulation dis-
crimination in light of atmospheric neutrino back-
grounds.

4. Measurement of the nuclear recoil direction as

suggested by upcoming directional detection expe-
riments [51]. Since the main neutrino background
has a solar origin, the directional signal of such
events is expected to be drastically different than
the WIMP-induced ones [52, 53]. This way, a
better discrimination between WIMP and neutrino
events will enhance the WIMP detection signifi-
cance allowing us to get stronger discovery limits.
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would have form factor suppression. This implies the stan-
dard missing energy signals that arise from DM production
and escape from the detector are rare.

Finally, there are many avenues for further investiga-
tion of stealth dark matter, detailed in [23]. One vital is-
sue is to better estimate the abundance. In the DM mass
regime where stealth DM is detectable at direct detection
experiments, the abundance of stealth dark matter can arise
naturally from an asymmetric production mechanism [23]
that was considered long ago [7–9] and more recently re-
viewed in [40]. If there is indeed an asymmetric abundance
of bosonic dark matter, there are additional astrophysical
consequences [41–43] that warrant further investigation to
constrain or probe stealth DM.
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Concluding remarks

✦Composite dark matter is a viable interesting possibility with 
rich phenomenology 

✦Lattice methods can help in calculating direct detection cross 
sections, production rates at colliders, and self-interaction 
cross sections. Direct phenomenological relevance. 

✦Dark matter constituents can carry electroweak charges and 
still the stable composites are currently undetectable. Stealth 
cross section. 

✦Lowest bound for composite dark matter models: ~300 GeV 
(colliders+direct detection+lattice) 
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cleon evaluated for xenon is shown as the purple band obtained
from the SU(4) polarizability, where the width of the band cor-
responds to 1/3 < MA

F < 3 from low to high. The blue curve
and the light blue region above it is excluded by the LUX con-
straints [1]. The vertical, darker shaded region is excluded by
the LEP II bound on charged mesons [23]. The orange region
represents the limit at which direct detection experiments will
be unable to discriminate DM events from coherent neutrino re-
coil [39]. We emphasize that this plot is applicable for xenon, and
would require calculating Eq. (17) to apply to other nuclei.

would have form factor suppression. This implies the stan-
dard missing energy signals that arise from DM production
and escape from the detector are rare.

Finally, there are many avenues for further investiga-
tion of stealth dark matter, detailed in [23]. One vital is-
sue is to better estimate the abundance. In the DM mass
regime where stealth DM is detectable at direct detection
experiments, the abundance of stealth dark matter can arise
naturally from an asymmetric production mechanism [23]
that was considered long ago [7–9] and more recently re-
viewed in [40]. If there is indeed an asymmetric abundance
of bosonic dark matter, there are additional astrophysical
consequences [41–43] that warrant further investigation to
constrain or probe stealth DM.
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Lattice Gauge Theory - basics

• Discretize space and time 
• lattice spacing “a” 
• lattice size “L” 

• Keep all d.o.f. of the theory 
• not a model! 
• no simplifications 

• Amenable to numerical 
methods 

• Monte Carlo sampling 
• use supercomputers 

• Precisely quantifiable and 
improvable errors 

• Systematic 
• Statistical

a

L

[KEK-Japan]



“Stealth Dark Matter” model

• The field content of the model 
consists in 8 Weyl fermions 

• Dark fermions interact with the 
SM Higgs and obtain current/
chiral masses 

• Introduce vector-like masses for 
dark fermions that do not break 
EW symmetry 

• Diagonalizing in the mass 
eigenbasis gives 4 Dirac 
fermions  

• Assume custodial SU(2) 
symmetry arising when u ↔ d

3

Field SU(N)
D

(SU(2)
L

, Y ) Q

F
1

=

 
Fu

1

F d

1

!
N (2, 0)
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N (1,�1/2) �1/2
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F d

4

N (1,�1/2) �1/2

TABLE I. Fermion particle content of the composite dark matter
model. All fields are two-component (Weyl) spinors. SU(2)

L

refers to the standard model electroweak gauge group, and Y is
the hypercharge. The electric charge Q = T

3

+Y for the fermion
components is shown for completeness.

yet have the ability to simulate on the lattice. Naive di-
mensional analysis applied to the annihilation rate suggests
the dark matter mass scale should be >⇠ 10-100 TeV, but a
more precise estimate is not possible at this time. In any
case, for dark matter with mass below this value, there is
an underproduction of dark matter through the symmet-
ric thermal relic mechanism, and so this does not restrict
consideration of dark matter mass scales between the elec-
troweak scale up to this thermal abundance bound.

CONSTRUCTING A VIABLE MODEL

[placeholder for a description of how a viable model
with interactions with the Higgs can be constructed while
satisfying the various (gross) experimental constraints]

We consider a new, strongly-coupled SU(N)

D

gauge
group with fermionic matter in the vector-like representa-
tions shown in Table I.

This is not the only possible choice for the charges, but
the requirement for the presence of Higgs Yukawa cou-
plings, along with extremely strong bounds on the ex-
istence of stable fractionally-charged particles based on
searches for rare isotopes [? ], greatly constrains the num-
ber of possible models.

DARK FERMION INTERACTIONS AND MASSES

The fermions F u,d

i

transform under a global U(4) ⇥
U(4) flavor symmetry that is broken to [SU(2) ⇥ U(1)]4
by the weak gauging of the electroweak symmetry. From
this large global symmetry, one SU(2) (diagonal) sub-
group will be identified with SU(2)

L

, one U(1) subgroup

will be identified with U(1)

Y

, and one U(1) will be iden-
tified with dark baryon number. The total fermionic con-
tent of the model is therefore 8 Weyl fermions that pair
up to become 4 Dirac fermions in the fundamental or
anti-fundamental representation of SU(N)

D

with electric
charges of Q ⌘ T

3,L

+ Y = ±1/2. We use the notation
where the superscript u and d (as in F u, F d and later  u,
 d,  u,  d) to denote a fermion with electric charge of
Q = 1/2 and Q = �1/2 respectively.

The fermion kinetic terms in the Lagrangian are given
by

L =

X

i=1,2
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where the covariant derivatives are
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with the interactions among the electroweak group and the
new SU(N)

D

. Here Y u

= 1/2, Y d

= �1/2 and tb

are the representation matrices for the fundamental N of
SU(N)

D

.
The vector-like mass terms allowed by the gauge sym-

metries are

L � M
12
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ij
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34
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34
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+h.c., (6)

where ✏
12

⌘ ✏
ud

= �1 = �✏12 and the relative minus
signs between the mass terms have been chosen for later
convenience. The mass term M

12

explicitly breaks the
[SU(2) ⇥ U(1)]2 global symmetry down to the diagonal
SU(2)

diag

⇥ U(1) where the SU(2)

diag

is identified with
SU(2)

L

. The mass terms Mu,d

34

explicitly break the re-
maining [SU(2)⇥U(1)]2 down to U(1)⇥U(1) where one
of the U(1)’s is identified with U(1)

Y

. (In the special case
when Mu

34

= Md

34

, the global symmetry is accidentally en-
hanced to SU(2)⇥U(1), where the global SU(2) acts as a
custodial symmetry.) Thus, after weakly gauging the elec-
troweak symmetry and writing arbitrary vector-like mass
terms, the unbroken flavor symmetry is thus U(1)⇥U(1).

Electroweak symmetry breaking mass terms arise from
coupling to the Higgs field H that we take to be in the
(2, +1/2) representation. They are given by
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where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking, H =

(0 v/
p

2)

T , with v ' 246 GeV. Inserting the vev

L �+ yu14✏ijF
i
1H

jF d
4 + yd14F1 ·H†Fu

4

� yd23✏ijF
i
2H

jF d
3 � yu23F2 ·H†Fu

3 + h.c.

L � M12✏ijF
i
1F

j
2 �Mu

34F
u
3 F

d
4 +Md

34F
d
3 F

u
4 + h.c.

yu14 = yd14 yu23 = yd23 Mu
34 = Md

34

[LSD collab., Phys. Rev. D92 (2015) 075030]



Computing Higgs exchange

✦ Need to non-perturbatively 
evaluate the dark σ-term 

✦ Effective Higgs coupling non-
trivial with mixed chiral and 
vector-like masses 

✦ Model-dependent answer for 
the cross-section 

✦ Lattice input is necessary: 
compute mass and form factor

Ma =
yfyq
2m2

h

X

f

hB|f̄f |Bi
X

q

ha|q̄q|ai

1. effective Higgs coupling with dark fermions 
and quark Yukawa coupling


2. dark baryon scalar form factor: need lattice 
input for generic DM models!


3. nucleon scalar form factor: ChPT and lattice 
input
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mB
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Lattice!

[LSD, 1402.6656-1503.04203]
[LatKMI, 1510.07373]

[Plenary talk by Collins, Tue@10:15]

h[DeGrand et al., 1501.05665]



Bounds on the Yukawa coupling

[LSD collab., Phys. Rev. D89 (2014) 094508]
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Bounds from EM moments
Magnetic moment  dominates for MB & 25 GeV

—Dashed lines show charge radius
⌦
r2↵ contribution to full rate

—Suppressed by 1/M2
B relative to magnetic moment contribution

10�2 10�1 100 101 102

M� = MB [TeV]

10�16

10�14

10�12

10�10

10�8

10�6

10�4

10�2

100

102

104

R
at

e,
ev

en
t/

(k
g·d

ay
)

Nf = 2

Nf = 6

XENON100 [1207.5988], 95% CL exclusion

XENON100 results
only sensitive to

⌦
r2↵

for MB . 0.5 TeV

Estimate MB . O(0.01) TeV
sensitive to polarizability

 = 0 automatically for SU(N) gauge theories with even N. . .

Composite dark matter on the lattice Theory Seminar, 24 March 2014 13 / 20

γ

Mesonic and Baryonic EM form factors 
directly from lattice simulations

[Plenary talk by Collins, Tue@10:15]

★ baryon similar to QCD neutron 

★ dark quarks with Q=Y 

★ calculate connected 3pt 
★ scale set by DM mass 

★ magnetic moment dominates 

★ results independent of Nf

[LSD, 1301.1693]
SU(3) Nf=2,6 dark fermionic baryon
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Nuclear: Rayleigh scattering

• it is hard to extract the momentum 
dependence of this nuclear form factor 

• similarities with the double-beta decay 
nuclear matrix element could suggest 
large uncertainties ~ orders of magnitude 

• to asses the impact of uncertainties on the 
total cross section we start from naive 
dimensional analysis 

• we allow a “magnitude” factor         to 
change from 0.3 to 3 

MA
F

fA
F ⇠ 3Z2 ↵
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F

R

fA
F = hA|Fµ⌫Fµ⌫ |Ai

� '
µ2
n�

⇡A2

*����
cF e2
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�

fA
F
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+

[Weiner & Yavin, Phys. Rev. D86 (2012) 075021]
[Frandsen et al., JCAP 1210 (2012) 033]

[Pospelov & Veldhuis, Phys. Lett. B480 (2000) 181]

[Ovanesyan & Vecchi, arxiv:1410.0601]
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Figure 1. One-loop Feynman graphs showing the contributions to the DM-nucleus cross section
in the case of OM . Mixing diagram generating OM

q (left), matching contribution giving rise to OM
G

(middle), and matrix element describing the low-energy two-photon scattering of DM on the nucleus
(right). See text for further details.

where eq is the electric charge of the quark q and mt < µ < M⇤. Notice that we have assumed
that the Wilson coe�cient of OM

q vanishes at M⇤.

We now evolve the Wilson coe�cient CM
q from M⇤ down to mt, where we integrate out

the top quark. Removing the heavy quark as an active degree of freedom gives rise to a finite
threshold correction to the Wilson coe�cient of the operator

OM
G = CM

G M̄MG

a,µ⌫
G

a
µ⌫ , (4.3)

where G

a,µ⌫ denotes the field strength tensor of QCD. The relevant leading-order (LO) di-
agram is shown in the middle of Figure 1. The corresponding matching is captured by the
simple replacement [30]

mtM̄Mt̄t CM
t (mt) ! M̄MG

a,µ⌫
G

a
µ⌫ CM

G (mt) , (4.4)

with CM
G given at next-to-leading order (NLO) by

CM
G (mt) = �↵s(mt)

12⇡

�
1 + �t

� CM
t (mt) , (4.5)

where �t = 11↵s(mt)/(4⇡) [31]. Although �t is formally of higher order, we will include such
finite two-loop contributions in our analysis, because they are numerically non-negligible.
Notice that once the top quark has been removed, the Wilson coe�cient CM

t and the corre-
sponding logarithm is frozen at the threshold mt in the EFT.

After the top quark has been integrated out, we then have to consider the mixing of
the set of three operators OM , OM

q and OM
G . Like OM the operator OM

G mixes into OM
q .

The relevant diagram is the QCD counterpart of the one displayed on the left in Figure 1
with the photons replaced by gluons. As shown in Appendix B, the associated corrections
are subleading and we will neglect them in what follows. The operator OM

G itself evolves like
the QCD coupling constant, so that for scales mb < µ < mt its Wilson coe�cient takes the
form

CM
G (µ) ' ↵

⇡

↵s(µ)

⇡

e

2
t

4

�
1 + �t

�
ln

✓
M

2
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m

2
t

◆
CM (M⇤) . (4.6)

At the scales mb and mc, the bottom and charm quarks are integrated out, which in
full analogy to (4.5) results in finite matching corrections to CM

G . Including all heavy-quark
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dimensional analysis 

• we allow a “magnitude” factor         to 
change from 0.3 to 3 
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F

fA
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[Weiner & Yavin, Phys. Rev. D86 (2012) 075021]
[Frandsen et al., JCAP 1210 (2012) 033]

[Pospelov & Veldhuis, Phys. Lett. B480 (2000) 181]

[Ovanesyan & Vecchi, arxiv:1410.0601]
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Figure 1. One-loop Feynman graphs showing the contributions to the DM-nucleus cross section
in the case of OM . Mixing diagram generating OM

q (left), matching contribution giving rise to OM
G

(middle), and matrix element describing the low-energy two-photon scattering of DM on the nucleus
(right). See text for further details.

where eq is the electric charge of the quark q and mt < µ < M⇤. Notice that we have assumed
that the Wilson coe�cient of OM

q vanishes at M⇤.

We now evolve the Wilson coe�cient CM
q from M⇤ down to mt, where we integrate out

the top quark. Removing the heavy quark as an active degree of freedom gives rise to a finite
threshold correction to the Wilson coe�cient of the operator

OM
G = CM

G M̄MG

a,µ⌫
G

a
µ⌫ , (4.3)

where G

a,µ⌫ denotes the field strength tensor of QCD. The relevant leading-order (LO) di-
agram is shown in the middle of Figure 1. The corresponding matching is captured by the
simple replacement [30]

mtM̄Mt̄t CM
t (mt) ! M̄MG

a,µ⌫
G

a
µ⌫ CM

G (mt) , (4.4)

with CM
G given at next-to-leading order (NLO) by

CM
G (mt) = �↵s(mt)

12⇡

�
1 + �t

� CM
t (mt) , (4.5)

where �t = 11↵s(mt)/(4⇡) [31]. Although �t is formally of higher order, we will include such
finite two-loop contributions in our analysis, because they are numerically non-negligible.
Notice that once the top quark has been removed, the Wilson coe�cient CM

t and the corre-
sponding logarithm is frozen at the threshold mt in the EFT.

After the top quark has been integrated out, we then have to consider the mixing of
the set of three operators OM , OM

q and OM
G . Like OM the operator OM

G mixes into OM
q .

The relevant diagram is the QCD counterpart of the one displayed on the left in Figure 1
with the photons replaced by gluons. As shown in Appendix B, the associated corrections
are subleading and we will neglect them in what follows. The operator OM

G itself evolves like
the QCD coupling constant, so that for scales mb < µ < mt its Wilson coe�cient takes the
form

CM
G (µ) ' ↵

⇡

↵s(µ)

⇡

e

2
t

4

�
1 + �t

�
ln

✓
M

2
⇤

m

2
t

◆
CM (M⇤) . (4.6)

At the scales mb and mc, the bottom and charm quarks are integrated out, which in
full analogy to (4.5) results in finite matching corrections to CM

G . Including all heavy-quark
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Lattice Stealth DM

• Non-perturbative lattice 
calculations of the spectrum 
confirm that lightest baryon has 
spin zero 

• The ratio of pseudoscalar (PS) 
to vector (V) is used as probe 
for different dark fermion 
masses 

• The meson to baryon mass ratio 
allows us to translate LEPII 
bounds on charged meson to 
LEP bounds on composite 
bosonic dark matter

Ê

Ê
ÊÊ

Ê

Ê
Ê

ÊÊ
Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê
ÊÊ

Ê

0.50 0.55 0.60 0.65 0.70 0.75
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

mPSêmv

aM

spin 0
spin 1
spin 2

PS

V

[LSD collab., Phys. Rev. D89 (2014) 094508]

• Study systematic effects 
due to lattice discretization 
and finite volume due to the 
relative unfamiliar nature of 
the system

[KEK-Japan]
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Lattice: Polarizability of DM

• Background field method: 
response of neutral baryon to 
external electric field 

• Measure the shift of the baryon 
mass as a function of 0.000 0.005 0.010 0.015 0.020 0.025 0.030
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