Recent Results from Beam Tests of 3D & Pad pCVD Diamond Detectors #### Rainer Wallny on behalf of the RD42 collaboration The help of my RD42 colleagues is gratefully acknowledged. ICHEP 2016, Chicago, USA # RD42 Collaboration (2016) #### The 2016 RD42 Collaboration A. Alexopoulos³, M. Artuso²², F. Bachmair²⁶, L. Bäni²⁶, M. Bartosik³, J. Beacham¹⁵, H. Beck²⁵, V. Bellini² V. Belyaev¹⁴, B. Bentele²¹, E. Berdermann⁷, P. Bergonzo¹³ A. Bes³⁰, J-M. Brom⁹, M. Bruzzi⁵, M. Cerv³, G. Chiodini²⁹, D. Chren²⁰, V. Cindro¹¹, G. Claus⁹, J. Collot³⁰, J. Cumalat²¹ A. Dabrowski³, R. D'Alessandro⁵, W. de Boer¹², B. Dehning³, C. Dorfer²⁶, M. Dunser³, V. Eremin⁸, R. Eusebi²⁷, G. Forcolin²⁴, J. Forneris¹⁷, H. Frais-Kölbl⁴, K.K. Gan¹⁵, M. Gastal³, C. Giroletti¹⁹, M. Goffe⁹, J. Goldstein¹⁹, A. Golubev¹⁰, A. Gorišek¹¹, E. Grigoriev¹⁰, J. Grosse-Knetter²⁵, A. Grummer²³, B. Gui¹⁵, M. Guthoff³, I. Haughton²⁴, B. Hiti¹¹, D. Hits²⁶, M. Hoeferkamp²³ T. Hofmann³, J. Hosslet⁹, J-Y. Hostachy³⁰, F. Hügging¹ C. Hutton¹⁹, H. Jansen³, J. Janssen¹, H. Kagan¹⁵, \diamond K. Kanxheri³¹, G. Kasieczka²⁶, R. Kass¹⁵, F. Kassel¹² M. Kis⁷, G. Kramberger¹¹, S. Kuleshov¹⁰, A. Lacoste³⁰. S. Lagomarsino⁵, A. Lo Giudice¹⁷, E. Lukosi²⁸, C. Maazouzi⁹ I. Mandic¹¹, C. Mathieu⁹, N. McFadden²³, M. Menichelli³¹ M. Mikuž¹¹, A. Morozzi³¹, R. Mountain²², S. Murphy²⁴, M. Muškinja¹¹, A. Oh²⁴, P. Olivero¹⁷, D. Passeri³¹, H. Pernegger³, R. Perrino²⁹, F. Picollo¹⁷, M. Pomorski¹³, R. Potenza², A. Quadt²⁵, A. Re¹⁷, M. Reichmann²⁶, G. Riley²⁸, S. Roe³, D. Sanz²⁶, M. Scaringella⁵, D. Schaefer³, C.J. Schmidt⁷, S. Schnetzer¹⁶, T. Schreiner⁴, S. Sciortino⁵, A. Scorzoni³¹, S. Seidel²³, L. Servoli³¹, B. Sopko²⁰ V. Sopko²⁰, S. Spagnolo²⁹, S. Spanier²⁸, K. Stenson²¹ R. Stone¹⁶, C. Sutera², A. Taylor²³, M. Traeger⁷, D. Tromson¹³, W. Trischuk^{18,\(\phi\)}, C. Tuve², L. Uplegger⁶, J. Velthuis¹⁹. N. Venturi¹⁸, E. Vittone¹⁷, S. Wagner²¹, R. Wallny²⁶ J.C. Wang²², P. Weilhammer³, J. Weingarten²⁵, C. Weiss³. T. Wengler³, N. Wermes¹, M. Yamouni³⁰, M. Zavrtanik¹¹ 127 Participants ¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ FWT, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ FNAL, Batavia, USA ⁷ GSI, Darmstadt, Germany ⁸ Ioffe Institute, St. Petersburg, Russia ⁹ IPHC, Strasbourg, France ¹⁰ ITEP. Moscow. Russia ¹¹ Jožef Stefan Institute, Ljubljana, Slovenia ¹² Universität Karlsruhe, Karlsruhe, Germany 13 CEA-LIST Technologies Avancees, Saclay, France ¹⁴ MEPHI Institute, Moscow, Russia ¹⁵ The Ohio State University, Columbus, OH, USA ¹⁶ Rutgers University, Piscataway, NJ, USA ¹⁷ University of Torino, Torino, Italy ¹⁸ University of Toronto, Toronto, ON, Canada ¹⁹ University of Bristol, Bristol, UK ²⁰ Czech Technical Univ., Prague, Czech Republic ²¹ University of Colorado, Boulder, CO, USA ²² Syracuse University, Syracuse, NY, USA ²³ University of New Mexico, Albuquerque, NM, USA ²⁴ University of Manchester, Manchester, UK ²⁵ Universität Goettingen, Goettingen, Germany ²⁶ ETH Zürich, Zürich, Switzerland ²⁷ Texas A&M, College Park Station, TX, USA ²⁸ University of Tennessee, Knoxville, TN, USA ²⁹ INFN-Lecce, Lecce, Italy 30 LPSC-Grenoble, Grenoble, Switzerland 31 INFN-Perugia, Perugia, Italy 31 Institutes #### Outline - 3D diamond detectors beam tests at CERN - 3D detector concept in pCVD diamond - Large scale 3D detector - Pulse height vs rate study of pCVD pad/pixel detectors at PSI - Setup - Results for pCVD pad detectors irradiated to 5e14 n/cm² - Conclusions - Outlook # Diamond 3D Test Beams at CERN # 3D Device in pCVD Diamond - First 3D device made from polycrystalline (pCVD) diamond! - Compare pCVD strip detector (500 V) with 3D (70 V) - Same metal mask on top and bottom for 3D and phantom to increase the probability of conductive columns ## 3D Device in pCVD Diamond: Noise #### Measured noise: - Planar strip: 80e Phantom: 82e 3D no noisy strips: 94e Noise performance consistent with expectation # 3D Device in pCVD Diamond: Signal - Measured signal: - Visually 3D gives more charge that planar strip! # 3D Device in pCVD Diamond:Signal - Measured signal (diamond thickness 525 μ m): $\frac{1}{2}$ - Planar Strip average charge: 6,200e or CCD=172 +/- 16 μm - 3D average charge: 12,100e or CCD=336 +/- 17 μm For the first time collect ~65% of charge in pCVD! # 3D Devices in pCVD Diamond - In May 2016 we tested the first full 3D pCVD detector with two significant improvements: - An order of magnitude more cells (1188 vs 99) - Smaller cell size (100 μm vs 150 μm) Readout side Bias side ### 3D Device in pCVD Diamond - Preliminary results of full 3D pCVD detector: - First plot of 3D average charge in small "good" region - Largest charge collection in pCVD diamond:~85% of charge collected! - Full analysis in progress # RD42 High Rate Test Beams at PSI #### Motivation: Diamond PLT Pulse Height Dependence on Rate - The first CMS Pixel Luminosity Telescope (PLT) was build using scCVD diamond sensors - During pilot run, a shift in pulse height was observed - High pulse height before collisions (beam halo) - Pulse height drops after beam brought into collision # **PSI Test Beam Campaign** - Several successful test beams in 2015 (May, August, October) - Some Pad Detector Results shown here, pixel detector results are being analyzed - Pad detectors: - study sensors w/o threshold effect - Quick detector fabrication and turn around - Pixel detectors: - Study effects of pixel threshold - Study effects of pixel charge sharing - Samples: - E6 scCVD non-irradiated (Reference) [pad] - II-VI pCVD non-irradiated [pad, pixel] - II-VI pCVD neutron irradiated (pad 1e14 and 5e14, pixel 5e14) - Tests: - Pulse height versus rate scan [pad 10 MHz/cm²] - Multiple rate up-down scans to determine measurement repeatability [pad, pixel] - Positive and negative bias polarities [pad] #### **DUT** devices #### Pad detector box #### Pixel detector plane CERN/OSU CVDFE1 fast amplifier pCVD diamond #### Readout w/ PSI46dig2respin chip - digital readout - Low in-time threshold ~1500 electrons ## PSI Test beam setup - piM1 beam line at PSI Proton Accelerator - 250 MeV/c "mostly" π + - Rate determined on the coincidence of front and back silicon planes - Particle rate easily variable with beam line collimators - from O(1 kHz/cm²) to O(10 MHz/cm²) - test setup reconfigurable into either a "pad" setup or "pixel" setup #### Pad test setup with masked pixel trigger #### 4 Tracking planes: - 2 Trigger planes - Scintillator for precise timing (0.7 ns) - 2 detectors under test # Pad Detector Analysis Results # Pad Analysis Setup RD 42 - Pulse height amplified with CERN/OSU CVDFE1 fast amp - 7 ns rise time, 23 ns fall time - Digitized by DRS4 evaluation board - 1024 sampling points - Sampling speed 2 GSPS - Find peak in the signal region - Integrate in the window around the peak - Integration window optimized to provide best signal to noise ratio - Subtract pedestal integral - Pedestal integrated exactly one bucket in front of the signal # Pad Analysis - Careful handling of systematic effects - Remove saturated wave forms (heavy ionizing particles) - Remove calibration events - Remove residual trigger jitter - Remove events in wrong bucket - **—** - Remaining pulse height distribution shown in red is clean with no remaining pedestal events 100 Test Campaign: Oct 2015 200 300 400 50 Pulse Height [au] # Preliminary summary rate dependence - The particle rate was varied up and down to check reproducibility - Systematics on 3% percent level - Differences on polarity due to electronics No significant rate dependence observed in pCVD diamond irradiated to 5e14 n/cm² with rates up to 10 MHz/cm² #### Conclusions - RD42 demonstrated 3D principle on pCVD diamond - ~65% of charge collected at 70 V bias - RD42 demonstrated large-scale (~1200 cells) 3D device - Preliminary analysis shows that it is capable of collecting up to 85% of charge! - A rate dependence (previously observed in a scCVD device) of the pulse height was examined in pCVD diamond sensors: - No rate dependence was observed for pCVD detectors irradiated up to 5e14 n/cm² and particle rates up to 10 MHz/cm² #### Outlook - Study un-irradiated and irradiated 3D devices - Study 3D device in high rate test beam - Confirm rate independence of pCVD diamond sensors irradiated to higher doses (up to 2e16 n/cm²) # Backup | | | silicon ^a | | natural | | |-----------------------------------|--|------------------------------|----------|---------------------|----------| | | | | | diamond b | | | proton number | [] | 14 | | 6 | | | atomic number | [] | 28.0855 | [9] | 12.011 | [9] | | lattice constant | [Å] | 5.4310 | [10] | 3.5668 | [10] | | mass density | $[\mathrm{gcm^{-3}}]$ | 2.329 | [10] | 3.515 | [10] | | cohesive energy | [eV/atom] | 4.63 | [11] | 7.37 | [11] | | melting point | [K] | 1685 | [10] | 4100 ^(c) | [10] | | band gap | [eV] | 1.124 | [10] | 5.48 | [10] | | relative dielectric constant d | [] | 11.9 | [10] | 5.7 | [10] | | resistivity | $[\Omega \mathrm{cm}]$ | $20 \times 10^{3 (e)}$ | | $> 10^{13}$ | [11] | | | $[\Omega \mathrm{cm}]$ | $5 \times 10^{11} {}^{(f)}$ | [3.2.3] | $> 10^{14} (g)$ | [3.2.3] | | breakdown field | $[{ m V}/{ m \mu m}]$ | 30 | | 1000 | | | electron mobility | $[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}]$ | | | 1500 | [12] | | | | 1450 | [10] | 2400 | [13] | | hole mobility | $[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}]$ | | | 1000 | [12] | | | | ≈ 440 | [10] | 2100 | [13] | | electron saturation velocity | [cm/s] | | | 2×10^7 | [13] | | hole saturation velocity | [cm/s] | | | 10^{7} | [13] | | thermal expansion coefficient | $[10^{-6} \mathrm{K}^{-1}]$ | 2.59 | [10] | 0.81.0 | [14] | | thermal conductivity | $[{ m Wcm^{-1}K^{-1}}]$ | 1.4 | | 2023 | [14] | | energy to create eh-pair | [eV] | 3.6 | [15, 16] | 13 | [13, 17] | | radiation length | [cm] | 9.4 | [9] | 12.03 | [3.75] | | specific ionization loss | $[\mathrm{MeV/cm}]$ | 3.9 | [3.3.1] | 6.2 | [3.3.1] | | ave. no. of eh-pairs/mip | [pairs/100 μ m] | 9000 | [3.3.5] | 3600 | [11] | | ave. no. of eh-pairs/mip | $[\mathrm{pairs}/300~\mu\mathrm{m}]$ | 27000 | [3.3.5] | 11850 | [3.3.5] | #### CMS PLT – Pilot Run Version RD 42 - Dedicated stand-alone Pixel Luminosity Telescope - Aim to provide high precision bunch-by-bunch luminosity measurement - Using "FastOr" readout - Array of eight 3-plane telescopes in CMS - Single-crystal diamond pixel sensors by DDL/E6 - Area 4.7 mm x 4.7 mm, thickness 500 μm - Pixel readout for tracking and minimization of systematics - 100 μm x 150 μm pixel pitch ### FLUKA Study for CASTOR region FLUKA Simulation suggests the scale of the doses of about 5x 10¹³/cm² each for charged hadrons and neutrons #### Radiation hardness of diamond Model: $\frac{1}{\lambda} = \frac{1}{\lambda_0} + k_{\lambda} \Phi$ $k_{24 \text{ GeV p}} \sim 0.62 \pm 0.07 \times 10^{-18} \, \mu \text{m}^{-1} \text{cm}^{-2}$ particle energy 24 GeV 1 proton 800 MeV 2.0 (was 1.7) relative k 70 MeV 2.7 25 MeV 4.2 pion 300 MeV/c ### Diamond traces