

Recent Results from Beam Tests of 3D & Pad pCVD Diamond Detectors

Rainer Wallny

on behalf of the RD42 collaboration

The help of my RD42 colleagues is gratefully acknowledged.

ICHEP 2016, Chicago, USA

RD42 Collaboration (2016)

The 2016 RD42 Collaboration

A. Alexopoulos³, M. Artuso²², F. Bachmair²⁶, L. Bäni²⁶, M. Bartosik³, J. Beacham¹⁵, H. Beck²⁵, V. Bellini² V. Belyaev¹⁴, B. Bentele²¹, E. Berdermann⁷, P. Bergonzo¹³ A. Bes³⁰, J-M. Brom⁹, M. Bruzzi⁵, M. Cerv³, G. Chiodini²⁹, D. Chren²⁰, V. Cindro¹¹, G. Claus⁹, J. Collot³⁰, J. Cumalat²¹ A. Dabrowski³, R. D'Alessandro⁵, W. de Boer¹², B. Dehning³, C. Dorfer²⁶, M. Dunser³, V. Eremin⁸, R. Eusebi²⁷, G. Forcolin²⁴, J. Forneris¹⁷, H. Frais-Kölbl⁴, K.K. Gan¹⁵, M. Gastal³, C. Giroletti¹⁹, M. Goffe⁹, J. Goldstein¹⁹, A. Golubev¹⁰, A. Gorišek¹¹, E. Grigoriev¹⁰, J. Grosse-Knetter²⁵, A. Grummer²³, B. Gui¹⁵, M. Guthoff³, I. Haughton²⁴, B. Hiti¹¹, D. Hits²⁶, M. Hoeferkamp²³ T. Hofmann³, J. Hosslet⁹, J-Y. Hostachy³⁰, F. Hügging¹ C. Hutton¹⁹, H. Jansen³, J. Janssen¹, H. Kagan¹⁵, \diamond K. Kanxheri³¹, G. Kasieczka²⁶, R. Kass¹⁵, F. Kassel¹² M. Kis⁷, G. Kramberger¹¹, S. Kuleshov¹⁰, A. Lacoste³⁰. S. Lagomarsino⁵, A. Lo Giudice¹⁷, E. Lukosi²⁸, C. Maazouzi⁹ I. Mandic¹¹, C. Mathieu⁹, N. McFadden²³, M. Menichelli³¹ M. Mikuž¹¹, A. Morozzi³¹, R. Mountain²², S. Murphy²⁴, M. Muškinja¹¹, A. Oh²⁴, P. Olivero¹⁷, D. Passeri³¹, H. Pernegger³, R. Perrino²⁹, F. Picollo¹⁷, M. Pomorski¹³, R. Potenza², A. Quadt²⁵, A. Re¹⁷, M. Reichmann²⁶, G. Riley²⁸, S. Roe³, D. Sanz²⁶, M. Scaringella⁵, D. Schaefer³, C.J. Schmidt⁷, S. Schnetzer¹⁶, T. Schreiner⁴, S. Sciortino⁵, A. Scorzoni³¹, S. Seidel²³, L. Servoli³¹, B. Sopko²⁰ V. Sopko²⁰, S. Spagnolo²⁹, S. Spanier²⁸, K. Stenson²¹ R. Stone¹⁶, C. Sutera², A. Taylor²³, M. Traeger⁷, D. Tromson¹³, W. Trischuk^{18,\(\phi\)}, C. Tuve², L. Uplegger⁶, J. Velthuis¹⁹. N. Venturi¹⁸, E. Vittone¹⁷, S. Wagner²¹, R. Wallny²⁶ J.C. Wang²², P. Weilhammer³, J. Weingarten²⁵, C. Weiss³. T. Wengler³, N. Wermes¹, M. Yamouni³⁰, M. Zavrtanik¹¹

127 Participants

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ FWT, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ FNAL, Batavia, USA ⁷ GSI, Darmstadt, Germany ⁸ Ioffe Institute, St. Petersburg, Russia ⁹ IPHC, Strasbourg, France ¹⁰ ITEP. Moscow. Russia ¹¹ Jožef Stefan Institute, Ljubljana, Slovenia ¹² Universität Karlsruhe, Karlsruhe, Germany 13 CEA-LIST Technologies Avancees, Saclay, France ¹⁴ MEPHI Institute, Moscow, Russia ¹⁵ The Ohio State University, Columbus, OH, USA ¹⁶ Rutgers University, Piscataway, NJ, USA ¹⁷ University of Torino, Torino, Italy ¹⁸ University of Toronto, Toronto, ON, Canada ¹⁹ University of Bristol, Bristol, UK ²⁰ Czech Technical Univ., Prague, Czech Republic ²¹ University of Colorado, Boulder, CO, USA ²² Syracuse University, Syracuse, NY, USA ²³ University of New Mexico, Albuquerque, NM, USA ²⁴ University of Manchester, Manchester, UK ²⁵ Universität Goettingen, Goettingen, Germany ²⁶ ETH Zürich, Zürich, Switzerland ²⁷ Texas A&M, College Park Station, TX, USA ²⁸ University of Tennessee, Knoxville, TN, USA ²⁹ INFN-Lecce, Lecce, Italy 30 LPSC-Grenoble, Grenoble, Switzerland 31 INFN-Perugia, Perugia, Italy

31 Institutes

Outline

- 3D diamond detectors beam tests at CERN
 - 3D detector concept in pCVD diamond
 - Large scale 3D detector
- Pulse height vs rate study of pCVD pad/pixel detectors at PSI
 - Setup
 - Results for pCVD pad detectors irradiated to 5e14 n/cm²
- Conclusions
- Outlook

Diamond 3D Test Beams at CERN

3D Device in pCVD Diamond

- First 3D device made from polycrystalline (pCVD) diamond!
 - Compare pCVD strip detector (500 V) with 3D (70 V)
 - Same metal mask on top and bottom for 3D and phantom to increase the probability of conductive columns

3D Device in pCVD Diamond: Noise

Measured noise:

- Planar strip: 80e

Phantom: 82e

3D no noisy strips: 94e

 Noise performance consistent with expectation

3D Device in pCVD Diamond: Signal

- Measured signal:
 - Visually 3D gives more charge that planar strip!

3D Device in pCVD Diamond:Signal

- Measured signal (diamond thickness 525 μ m): $\frac{1}{2}$
 - Planar Strip average charge: 6,200e
 or CCD=172 +/- 16 μm
 - 3D average charge: 12,100e
 or CCD=336 +/- 17 μm

For the first time collect ~65% of charge in pCVD!

3D Devices in pCVD Diamond

- In May 2016 we tested the first full 3D pCVD detector with two significant improvements:
 - An order of magnitude more cells (1188 vs 99)
 - Smaller cell size (100 μm vs 150 μm)

Readout side

Bias side

3D Device in pCVD Diamond

- Preliminary results of full 3D pCVD detector:
 - First plot of 3D average charge in small "good" region
 - Largest charge collection in pCVD diamond:~85% of charge collected!
 - Full analysis in progress

RD42 High Rate Test Beams at PSI

Motivation: Diamond PLT Pulse Height Dependence on Rate

- The first CMS Pixel Luminosity Telescope (PLT) was build using scCVD diamond sensors
- During pilot run, a shift in pulse height was observed
 - High pulse height before collisions (beam halo)
 - Pulse height drops after beam brought into collision

PSI Test Beam Campaign

- Several successful test beams in 2015 (May, August, October)
 - Some Pad Detector Results shown here, pixel detector results are being analyzed
- Pad detectors:
 - study sensors w/o threshold effect
 - Quick detector fabrication and turn around
- Pixel detectors:
 - Study effects of pixel threshold
 - Study effects of pixel charge sharing
- Samples:
 - E6 scCVD non-irradiated (Reference) [pad]
 - II-VI pCVD non-irradiated [pad, pixel]
 - II-VI pCVD neutron irradiated (pad 1e14 and 5e14, pixel 5e14)
- Tests:
 - Pulse height versus rate scan [pad 10 MHz/cm²]
 - Multiple rate up-down scans to determine measurement repeatability [pad, pixel]
 - Positive and negative bias polarities [pad]

DUT devices

Pad detector box

Pixel detector plane

CERN/OSU
CVDFE1
fast amplifier

pCVD diamond

Readout w/ PSI46dig2respin chip

- digital readout
- Low in-time threshold ~1500 electrons

PSI Test beam setup

- piM1 beam line at PSI Proton Accelerator
 - 250 MeV/c "mostly" π +
- Rate determined on the coincidence of front and back silicon planes
- Particle rate easily variable with beam line collimators
 - from O(1 kHz/cm²) to O(10 MHz/cm²)
- test setup reconfigurable into either a "pad" setup or "pixel" setup

Pad test setup with masked pixel trigger

4 Tracking planes:

- 2 Trigger planes
- Scintillator for precise timing (0.7 ns)
- 2 detectors under test

Pad Detector Analysis Results

Pad Analysis Setup

RD 42

- Pulse height amplified with CERN/OSU CVDFE1 fast amp
 - 7 ns rise time, 23 ns fall time
- Digitized by DRS4 evaluation board
 - 1024 sampling points
 - Sampling speed 2 GSPS

- Find peak in the signal region
- Integrate in the window around the peak
 - Integration window optimized to provide best signal to noise ratio
- Subtract pedestal integral
 - Pedestal integrated exactly one bucket in front of the signal

Pad Analysis

- Careful handling of systematic effects
 - Remove saturated wave forms (heavy ionizing particles)
 - Remove calibration events
 - Remove residual trigger jitter
 - Remove events in wrong bucket
 - **—**
- Remaining pulse height distribution shown in red is clean with no remaining pedestal events

100

Test Campaign: Oct 2015

200

300

400 50 Pulse Height [au]

Preliminary summary rate dependence

- The particle rate was varied up and down to check reproducibility
 - Systematics on 3% percent level
 - Differences on polarity due to electronics

No significant rate dependence observed in pCVD diamond irradiated to 5e14 n/cm² with rates up to 10 MHz/cm²

Conclusions

- RD42 demonstrated 3D principle on pCVD diamond
 - ~65% of charge collected at 70 V bias
- RD42 demonstrated large-scale (~1200 cells) 3D device
 - Preliminary analysis shows that it is capable of collecting up to 85% of charge!
- A rate dependence (previously observed in a scCVD device) of the pulse height was examined in pCVD diamond sensors:
 - No rate dependence was observed for pCVD detectors irradiated up to 5e14 n/cm² and particle rates up to 10 MHz/cm²

Outlook

- Study un-irradiated and irradiated 3D devices
- Study 3D device in high rate test beam
- Confirm rate independence of pCVD diamond sensors irradiated to higher doses (up to 2e16 n/cm²)

Backup

		silicon ^a		natural	
				diamond b	
proton number	[]	14		6	
atomic number	[]	28.0855	[9]	12.011	[9]
lattice constant	[Å]	5.4310	[10]	3.5668	[10]
mass density	$[\mathrm{gcm^{-3}}]$	2.329	[10]	3.515	[10]
cohesive energy	[eV/atom]	4.63	[11]	7.37	[11]
melting point	[K]	1685	[10]	4100 ^(c)	[10]
band gap	[eV]	1.124	[10]	5.48	[10]
relative dielectric constant d	[]	11.9	[10]	5.7	[10]
resistivity	$[\Omega \mathrm{cm}]$	$20 \times 10^{3 (e)}$		$> 10^{13}$	[11]
	$[\Omega \mathrm{cm}]$	$5 \times 10^{11} {}^{(f)}$	[3.2.3]	$> 10^{14} (g)$	[3.2.3]
breakdown field	$[{ m V}/{ m \mu m}]$	30		1000	
electron mobility	$[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}]$			1500	[12]
		1450	[10]	2400	[13]
hole mobility	$[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}]$			1000	[12]
		≈ 440	[10]	2100	[13]
electron saturation velocity	[cm/s]			2×10^7	[13]
hole saturation velocity	[cm/s]			10^{7}	[13]
thermal expansion coefficient	$[10^{-6} \mathrm{K}^{-1}]$	2.59	[10]	0.81.0	[14]
thermal conductivity	$[{ m Wcm^{-1}K^{-1}}]$	1.4		2023	[14]
energy to create eh-pair	[eV]	3.6	[15, 16]	13	[13, 17]
radiation length	[cm]	9.4	[9]	12.03	[3.75]
specific ionization loss	$[\mathrm{MeV/cm}]$	3.9	[3.3.1]	6.2	[3.3.1]
ave. no. of eh-pairs/mip	[pairs/100 μ m]	9000	[3.3.5]	3600	[11]
ave. no. of eh-pairs/mip	$[\mathrm{pairs}/300~\mu\mathrm{m}]$	27000	[3.3.5]	11850	[3.3.5]

CMS PLT – Pilot Run Version

RD 42

- Dedicated stand-alone Pixel Luminosity Telescope
 - Aim to provide high precision bunch-by-bunch luminosity measurement
 - Using "FastOr" readout
- Array of eight 3-plane telescopes in CMS
- Single-crystal diamond pixel sensors by DDL/E6
 - Area 4.7 mm x 4.7 mm, thickness 500 μm
- Pixel readout for tracking and minimization of systematics
 - 100 μm x 150 μm pixel pitch

FLUKA Study for CASTOR region

FLUKA Simulation suggests the scale of the doses of about 5x 10¹³/cm² each for charged hadrons and neutrons

Radiation hardness of diamond

Model: $\frac{1}{\lambda} = \frac{1}{\lambda_0} + k_{\lambda} \Phi$

 $k_{24 \text{ GeV p}} \sim 0.62 \pm 0.07 \times 10^{-18} \, \mu \text{m}^{-1} \text{cm}^{-2}$

particle

energy 24 GeV

1

proton

800 MeV

2.0 (was 1.7)

relative k

70 MeV

2.7

25 MeV

4.2

pion

300 MeV/c

Diamond traces

