

Measurement of the neutrino-nucleon cross-section at multi-TeV energies with the IceCube Neutrino Detector

Sandy Miarecki for the IceCube Collaboration

US Air Force Academy, Lawrence Berkeley National Laboratory, and University of California-Berkeley

Source: Muon neutrinos from cosmic rays

- Flux of atmospheric and astrophysical v_{μ}
 - Isotropic cosmic rays interact with atmosphere [Gaisser, Elbert]
 - Resulting kaons and pions decay into "conventional" v_{μ} [Honda et al 2007]
 - Charm atmospheric neutrino component ("prompt") [ERS 2008]
 - "Astrophysical" neutrinos from the universe's accelération mechanisms
 - Available flux is 98% conventional, 1.4% astrophysical, and 0.6% prompt

Target: Earth

- Earth density model: Preliminary Reference Earth Model [PREM 1981]
 - Observe/measure neutrino absorption in the Earth
 - Differential density changes spectrum from surface to detector
 - Earth diameter = interaction length at ~40 TeV

Detector: IceCube Neutrino Detector

- Neutrino astrophysics with world's largest neutrino telescope
- Detects Cherenkov photons from charged particles
- Located at South Pole in deep clear glacial ice (1450 2450 m deep)
 1 km³ instrumented volume, or ~1 Gigaton
- 5160 optical sensors (digital optical modules, DOMs) deployed on 86 strings, 60 DOMs per string, 125-m grid, plus surface array IceTop
 - Particle energy range ~ 10 GeV 1 EeV (10⁹ GeV)
 - Muon neutrino direction $< \pm 1$ degree, muon energy $\pm 50\%$
 - Average detector uptime 99.8% taking data year-round
- Collaboration of 300 members from 48 institutions in 12 countries

References

- Cosmic rays: Gaisser, Astropart. Phys. 35 (2012) 801-806
- Cosmic ray knee correction: Elbert, DUMAND Summer Workshop Vol 2 (1978)
- Atmospheric neutrinos: Honda et al., Phys Rev D 75 (2007) 043006
- Prompt neutrinos: Enberg, Reno, & Sarcevic, Phys Rev D 78 (2008) 043005
- PREM: Dziewonski & Anderson, Phys. Earth Planet. Inter., 25 (1981) 297-356
- Neutrino model: Cooper-Sarkar, Mertsch, & Sarkar, JHEP 1108 (2011) 042
- Diffractive neutrinos: Seckel, Phys Rev Let 80 (1998) 5
- Truncated Energy: IceCube Collaboration, NIM A 703 (2013) 190-198
- Astrophysical neutrinos: IceCube Collaboration, ApJ 809 (2015) 98

Cross section baseline

- Total cross section for NC and CC interactions for v_{μ} and \overline{v}_{μ}
 - Assumes that NC and CC cross sections scale together
 - Result does not account for diffractive neutrinos [Seckel 1998]
- Cooper-Sarkar, Mertsch, Sarkar [CSMS 2011]
 - Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) formalism of next-to-leading-order (NLO) QCD for CC and NC cross sections using HERAPDF1.5
 - Sensitive to very small Bjorken-x (down to 10⁻⁵)
 - Energy range extended to 5 x 10²⁰ eV (500 EeV)
 - Theoretical CC cross section ~47 pb at 10 TeV
 - Expected theoretical uncertainty ~5%

Simulation

- Source simulation from NeutrinoGenerator (NuGen)
 - Monte Carlo that creates, propagates, and interacts up-going neutrinos
 - Can vary cross section models to generate expectations for fitter
- Background simulation from CORSIKA
 - Cosmic ray muon (down-going) events for background rejection
 - Signal to background $\sim 1.10^6$ events, final event selection purity 99.9%

Experimental fit

- Event selection yielded 10,784 muon neutrinos in 2010 data year
- Muon energy determined by Truncated Energy method [IceCube 2013]
- Two-dimensional LLH fit in muon energy and zenith angle
- Constrained by priors from other experiments
 - Astrophysical and prompt fluxes from IceCube [IceCube 2015]
- Fit result given as multiple of SM expectation from CSMS 2011
 - Fit parameters included fluxes of conventional, astrophysical, prompt, plus $v_{\mu} \overline{v}_{\mu}$ ratio, kaon-pion ratio, DOM efficiency
 - Systematics included ice model, Earth model, atmospheric temperature model, and choice of astrophysical and prompt flux priors

Results

- Total v_{μ} -nucleon cross section = 1.30 $^{+0.30}_{-0.26}$ (stat.) $^{+0.32}_{-0.40}$ (syst.) times CSMS 2011 expectation
 - Energy range 6.3 TeV to 980 TeV
- In agreement with the Standard Model cross section at high energy
- Plans for follow-up analysis using 5+ years of data

email: sandra.miarecki@usafa.edu or scmiarecki@lbl.gov Distribution A, approved for public release, distribution unlimited