

Charged Higgs searches in CMS

Andrea Carlo Marini

Massachusetts Institute of Technology

on behalf of the CMS Collaboration

ICHEP - 6 August 2016

Introduction

Charged Higgs bosons appear in many extensions of the SM

 H^{-}

2HDM

- type I / type II / type Y...
- Light: $m_{H\pm} < m_t$ m_b
 - t→H±b
 - ttbar and single top productions
 - for tan β > 5 preferentially decays into $\tau \nu$ p
- **Heavy**: $m_{H\pm} > m_t m_b$
 - for very high masses H[±]→tb
 - $\mathscr{B}(H^{\pm} \rightarrow \tau \nu) \sim 1 10 \%$

Triplets models

- Introduce H[±]WZ couplings at tree level
- Different phenomenology wrt nHDM
- Georgi-Machacek: Nucl. Phys. B 262 (1985)
 - real and complex triplet
 - free parameters: mass and sinTH

CMS Detector

Andrea Carlo Marini

6 Aug 2016

Status & Prospects

LHC-Runl legacy from CMS:

- Focus on MSSM models:
 - special case of 2HDM-typell models
 - excluding $m_{H\pm} < 155~GeV$ (various models)
 - light-stop scenario is excluded $m_{\text{H}\pm} < 160 \text{ GeV}$
 - low mH scenario completely excluded
- High mass searches up to 600 GeV
 - MSSM models better constrained by neutral searches
 - space left at $\tan\beta < 10$ and $m_A > 350$ GeV

Andrea Carlo Marini

MSSM RunI

- MSSM is a special case of 2HDM-typell
- Constrain from neutral channels h,H,A $\rightarrow \tau \tau$
 - many parts of the phase space is now excluded

Andrea Carlo Marini

6 Aug 2016

20

10

For runil resauces see 400

Search for $H^{\pm} \rightarrow cb$

flipped 2HDM model

Selection:

- 1 lepton: µ (e):
 - p_T > 26 (30) GeV
 - |η|< 2.1 (2.5)
- $N_{jets} \ge 4 jets$
- MET > 20 GeV
- $N_{b-jets} \ge 2$

CMS-PAS-HIG-16-030

Strategy:

- Fit m_{jj} of the invariant mass
- kitematic fitter to reconstruct the ttbar event
- simultaneously in two categories
 - N_{b-jets} = 2 (constrain tt)
 - $N_{b-jets} \ge 3$
- Assume B(H[±]→cb) =1

Mjj Distributions

- Left, 2-btag category (electron)
- Right, 3-btag category (electron)

CMS-PAS-HIG-16-030

CMS-PAS-HIG-16-030

Results

- Setting limits on the B(t \rightarrow H[±]b) assuming B(H[±] \rightarrow cb) = 1
- data agree with the SM

Andrea Carlo Marini

6 Aug 2016

Run II

H[±]→WZ in VBF signature

- 3 leptons (µ, e)
 - p_T > 20, 10, 20 GeV
 - $|\eta| < 2.4$ (2.5) electrons (muons)
- 2 jets
 - p_T > 30 GeV
 - $|\eta| < 5$
- MET > 30 GeV
- One Z:
 - Opposite sign same flavor leptons
 - |m_u m_z| < 15 GeV
- VBF:
 - m*jj* > 500 GeV
 - Δη(j,j) > 2.5
- anti b-tag

CMS-PAS-HIG-16-027

Background & Signal Extraction

- Non prompt background:
 - data-driven

• m_T (massive particles)

$$M_T(WZ) = \sqrt{(E_T^Z + E_T^W)^2 - (\bar{p}_T^Z + \bar{p}_T^W)^2}$$

CMS-PAS-HIG-16-027

6 Aug 201

Cross section limits

• 95% CL limits (CLs criterion) on the production cross section

Pythia (H⁺) vs Madgraph (W)

→ cD) =

A2% CF ON B(I → H D) WIIN B(H

Summary

Andrea Carlo Marini

6 Aug 2016

Backup

• Systematics

Source	Signal	WZ	VVV	$Z\gamma$	ZZ	Non-prompt
Luminosity	2.7-6.2		2.7-6.2	2.7-6.2	2.7-6.2	
Lepton efficiency	4.0		4.0	4.0	4.0	—
Lepton momentum scale	1.0	1.0	1.0	1.0	1.0	—
Jet momentum scale	2.0 - 5.0	8.0	6.0	30.0	13.0	
$E_{\rm T}^{\rm miss}$ resolution	5.0	1.7	1.0		7.0	—
B-tagging	2.0		2.0	2.0	2.0	—
WZ normalization		21-23				—
Non-prompt normalization						30-81
GM uncertainties	8					—

Table 1: Relative systematic uncertainties in the estimated signal and background yields, in units of percent

Hcb

• Systematics (see PAS for the full list)

Table 4: List of rate systematic uncertainties for e+jets (μ +jets) channel H⁺ signal samples for 2 b-tagged (up) and \geq 3 b-tagged (down) region.

H^+ mass (GeV)	90	100	110	120	130	140	150		
2 b-tags									
B-tagging SF (b/c)	1.3(1.3)%	1.2(1.3)%	1.3(1.2)%	1.2(1.2)%	1.5(1.4)%	1.6(1.7)%	2.1(2.1)%		
B-tagging SF (light/gluon)	0.1(0.1)%	0.1(0.1)%	0.1(0.1)%	0.2(0.1)%	0.1(0.1)%	0.1(0.1)%	0.1(0.1)%		
Pileup reweight SF	0.3(0.4)%	0.8(0.3)%	0.8(0.2)%	0.1(0.4)%	0.4(0.1)%	0.4(0.1)%	1.2(0.2)%		
3 b-tags									
B-tagging SF (b/c)	5.7(5.7)%	5.8(5.7)%	5.7(5.8)%	5.7(5.8)%	5.7(5.7)%	5.7(5.7)%	5.6(5.7)%		
B-tagging SF (light/gluon)	0.3(0.3)%	0.2(0.3)%	0.2(0.3)%	0.2(0.3)%	0.3(0.2)%	0.3(0.4)%	0.7(0.4)%		
Pileup reweight SF	0.6(0.4)%	0.7(0.1)%	0.3(0.1)%	0.7(0.1)%	0.5(0.3)%	0.1(0.1)%	0.7(0.4)%		

Table 5: List of rate systematic uncertainties of e+jets (μ +jets) channel t \bar{t} and non-t \bar{t} samples.

	tī,2b	tī, 3b _{nor}	tī, 3b _{high}	non-t ī ,2b	non-t ī , 3b _{nor}	non-t ī , 3b _{high}	
B-tagging SF (b/c)	3.6(3.6)%	5.7(5.7)%	5.7(5.7)%	3.0(2.9)%	4.4(4.0)%	4.3(4.0)%	
B-tagging SF (light/gluon)	0.2(0.2)%	2.8(2.7)%	2.8(2.7)%	1.7(1.9)%	2.3(3.2)%	2.3(3.2)%	
Pileup reweight SF	0.3(0.5)%	0.3(0.7)%	0.3(0.7)%	0.7(1.3)%	0.3(0.4)%	0.4(0.3)\$	