#### Cosmology and Particle physics with POLARBEAR and Simons Array

ICHEP2016, Aug. 5, 2016 Masaya Hasegawa (KEK) on behalf of POLARBEAR/ Simons Array collaboration



- POLARBEAR
  - Motivations : Inflation and  $\boldsymbol{\nu}$  masses
  - Instruments and observation
  - Recent results
- Status & Prospects
  - POLARBEAR2 and Simons Array

#### **POLARBEAR Collaboration**





#### What's POLARBEAR ?

• CMB Polarization Experiment in Chile.



## What's POLARBEAR ?

- CMB Polarization Experiment in Chile.
- Measuring the B-modes in CMB polarization
  - Inflationary gravitational waves
  - Gravitational lensing: Neutrino masses



## What's POLARBEAR ?

- CMB Polarization Experiment in Chile.
- Measuring the B-modes in CMB polarization
  - Inflationary gravitational waves
  - Gravitational lensing: Neutrino masses

Shed light on fundamental problems in cosmology and particle physics !

























# B-mode is a smoking gun signature of inflationary universe!

**KEK** 























- Small angular scale B-mode is the signature of lensing
- Probe of physics affecting structure growth at  $z\sim 2$ .





### **Lensing B-mode Power**



#### **Lensing B-mode Power**



#### **POLARBEAR Site**







## **POLARBEAR Optics**





### **POLARBEAR-1** Focal Plane



#### **MASAYA HASEGAWA**

dipole antenna



### **POLARBEAR-1 Focal Plane**



## **POLARBEAR-1** Focal Plane



**MASAYA HASEGAWA** 

dipole antenna

#### Observation



- We started observation in May. 2012, and have collected more than 10000 hour data.
- Released three lensing B-mode results using 1<sup>st</sup> season data.



### Observation



- We started observation in May. 2012, and have collected more than 10000 hour data.
- Released three lensing B-mode results using 1<sup>st</sup> season data.



## Observation



- We started observation in May. 2012, and have collected more than 10000 hour data.
- Released three lensing B-mode results using 1<sup>st</sup> season data.



#### **First-season POLARBEAR Results**



- First measurement of lensing B-mode spectrum
  - 97.2% rejection of "no lensing B-mode" (4.7 $\sigma$  including  $C_{\ell}^{dd}$ )
  - Amplitude is consistent with  $\Lambda$ CDM expectation



#### Recent papers with 1<sup>st</sup> season data

| Торіс                                                                   | Journal                |                              |
|-------------------------------------------------------------------------|------------------------|------------------------------|
| Cross correlation of lensing deflection with Cosmic Infrared Background | PRL 112, 131302 (2014) | Editor's suggestion          |
| Lensing deflection power spectrum                                       | PRL 113. 021301 (2014) | Editor's - O<br>suggestion B |
| CMB B-mode auto power spectrum                                          | ApJ 794, 2 (2014)      | Jode                         |
| Modeling of atmospheric emission                                        | ApJ 809, 63 (2015)     |                              |
| Cosmic Birefringence and Primordial<br>Magnetic Field                   | PRD 92, 123509 (2015)  | Editor's<br>suggestion       |
| Map-making algorithm                                                    | Submitted              |                              |

- POLARBEAR continues timely publication of high profile results.
- More results (with 2<sup>nd</sup> season data) will come.





- We have observed larger (30 x 20 deg<sup>2</sup>) patch to access lower ell region.
- Mitigate 1/f noise with continuously rotating HWP.
   Ready to target inflation B-mode !





- We have observed larger (30 x 20 deg<sup>2</sup>) patch to access lower ell region.
- Mitigate 1/f noise with continuously rotating HWP.
   *Ready to target inflation B-mode !*

## The Simons Array

Expanding POLARBEAR to three multi-chroic telescopes





## **POLARBEAR to Simons Array**



- Three larger focal plane (7588 TES / focal plane)
- Multi-chroic pixels with 95/150, 220/280GHz frequency coverage.
   x18 leap with multi-chroic pixels





## **POLARBEAR-2** Detector



- TES bolometer w/ 2-band sinuous detector design (Suzuki et al, 1210.8256)
- Detector fabrication at UCB on 6" silicon wafers
- 1084 bolometers per wafer
- 40x frequency MUX readout

Silicon 2-layer AR Lenslet Array





#### 1st receiver assembly at KEK





 2<sup>nd</sup> and 3<sup>rd</sup> receiver backends are being constructed in UCSD.



Photo taken by Nate Stebor (UCSD)

#### Two new telescopes (HTT-2 & HTT-3)

#### POLARBEAR-1 telescope (HTT-1)

Assembly of 2 telescopes will be completed soon. Simons Array (1.3k  $\rightarrow$  23k detectors) will start in 2018

#### Simons Array (projected) sensitivity



Simons Array can contribute to cosmology and particle physics significantly.



#### Future : Simons Observatory

#### SIMONSOBSERVATORY



- Five year program (\$45M) to establish observatory for key CMB science, and advancing technology.
- Important step towards CMB-S4



## Summary

- POLARBEAR is a ground-based CMB polarization experiment, aiming to reveal the inflationary universe and neutrino absolute mass scale.
- POLARBEAR-1 : the first measurement of lensing Bmode signal at  $4.7\sigma$  with CMB data alone, and large patch observation started for inflationary B-mode.
- POLARBEAR-2/Simons Array is being prepared.

#### Stay Tuned !



#### Supplements

#### **Experimental status**



- Lensing B-mode has been detected by a several groups (1<sup>st</sup> detection was made by PB).
- No clear evidence is found for inflation B-mode. 44

#### 1.Lensing CMB polarization measurement from CMB polarization



 Power spectrum of lensing diffraction field estimators reconstructed from our CMB polarization data.

**4.2**  $\sigma$  detection of lensing B-mode

#### 2.Lensing CMB polarization measurement from cross correlation with CIB



 Cross-power spectrum of CMB polarization lensing and 500 μm Herschel CIB map. 4.0 σ detection of lensing B-mode

#### Systematics evaluation



- Estimated instrumental systematics in BB and EB power spectra. ----- Statistical uncertainty ----- Theory
  - Cumulative bias Pointing uncertainty Residual polarization angle uncertainty HWP-dependent relative gain model Differential beamsize Differential ellipticity HWP-independent relative gain model Electrical crosstalk Gain drift

Statistical uncertainty

All of the systematics are smaller than statistical uncertainty by  $1Q_7^{-1}$ .





