38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

The European Spalation Source Neutrino Super Beam for CP Violation discovery

ICHEP2016CHICAGO

Chicago, August

Marcos DRACOS PHC-IN2P3/CNRS Université de Strasbourg

Chicago, August 2016

50 MeV

191 MeV

653 MeV

• The ESS will be a copious source of spallation neutrons.

3 MeV

- 5 MW average beam power.
- 125 MW peak power.
- 14 Hz repetition rate (2.86 ms pulse duration, 10¹⁵ protons).
- Duty cycle 4%.

75 keV

- 2.0 GeV protons (up to 3.5 GeV with linac upgrades).
- >2.7x10²³ p.o.t/year.

2000 MeV

Linac ready by 2023 (full power and energy)

Target

Having access to a powerful proton beam...

What can we do with:

- 5 MW power
- 2 GeV energy
- 14 Hz repetition rate
- 10¹⁵ protons/pulse
- $>2.7 \times 10^{23}$ protons/year

conventional neutrino (super) beam

• almost pure v_{μ} beam

small v_e
 contamination

		positive		negative			
		$N_{ u}~(imes 10^{10})/{ m m}^2$	%	$N_{ u}~(imes 10^{10})/{ m m}^2$	%		
1	ν_{μ}	396	97.9	11	1.6		
i	$\bar{ u}_{\mu}$	6.6	1.6	206	94.5		
1	ν_e	1.9	0.5	0.04	0.01		
i	$\bar{\nu}_e$	0.02	0.005	1.1	0.5		

at 100 km from the target and per year (in absence of oscillations)

HC Neutrino Oscillations with "large" 6

- 1st oscillation max.: $A=0.3sin\delta_{CP}$
- 2^{nd} oscillation max.: A=0.75sin δ_{CP}

Chicago, August 2016

M. Dracos IPHC-IN2P3/CNRS/UNISTRA

more sensitivity at 2^{nd} oscillation max.

(see arXiv:1310.5992 and arXiv:0710.0554)

Can we go to the 2nd oscillation maximum using our proton beam?

Yes, if we place our far detector at around 500 km from the neutrino source.

MEMPHYS like Cherenkov detector (MEgaton Mass PHYSics studied by LAGUNA)

- Neutrino Oscillations (Super Beam, Beta Beam)
- Proton decay
- Astroparticles
- Understand the gravitational collapsing: galactic SN
- Supernovae "relics"
- Solar Neutrinos
- Atmospheric Neutrinos
 - 500 kt fiducial volume (~20xSuperK)
 - Readout: ~240k 8" PMTs
 - 30% optical coverage

NOLOGY

ESS Linac modifications to produce a neutrino Super Beam

Chicago, Aug 52016 M. Dra

M. Dracos IPHC-IN2P3/CNRS/UNISTRA

10

How to add a neutrino facility?

WINDPOWER

ACILITY

RESERVED AREA

- The neutron program must not be affected and if possible synergetic modifications.
- Linac modifications: double the rate (14 Hz \rightarrow 28 Hz), from 4% duty cycle to 8%.
- Accumulator (C~400 m) needed to compress to few µs the 2.86 ms proton pulses, affordable by the magnetic horn (350 kA, power consumption, Joule effect)
 - H⁻ source (instead of protons),
 - space charge problems to be solved.
- ~300 MeV neutrinos.
- Target station (studied in EUROv).
- Underground detector (studied in LAGUNA).
- Short pulses (~µs) will also allow DAR experiments (as those proposed for SNS) using the neutron target.

Chicago, August 2016

M. Dracos IPHC-IN2P3/CNRS/UNISTRA

TRAM STOP

Preparing the ESS linac for operation at 10 MW with a 8% duty cycle and 28 Hz pulsing

 $5 \text{ ource} + \text{LEBT} + \text{RFQ} + \text{MEBT} + \text{DTL} + \text{Spokes} + \text{Medium } \beta + \text{High } \beta + \text{HEBT & Upgrade} + \text{Targe}$ $75 \text{ keV} \qquad 3 \text{ MeV} \qquad 50 \text{ MeV} \qquad 191 \text{ MeV} \qquad 653 \text{ MeV} \qquad 2000 \text{ MeV}$

For the medium-beta elliptical-cavity part ESS is planning to use tetrodes. Thales has developed a new screen grid with graded wire thickness making operation at **10 % duty cycle** possible.

For the warm low-energy part of the ESS linac and the medium energy Elliptical-cavities part, ESS is planning to use modulators of the *modular klystron modulator type* which can be run at 28 Hz at double power by adding a capacitor charger-unit at the input.

> The picture shows the cryostat and test bunker at the FREIA Lab in Uppsala where a first prototype of the ESS 352 MHz spoke accelerating cavity is currently under test at 14 Hz and later on will be tested at 28 Hz.

proton beam switchyard

- ~60% δ_{CP} coverage at 5 σ C.L.
- >75% δ_{CP} coverage at 3 σ C.L.
- systematic errors: 5%/10% (signal/backg.)

Muons at the level of the beam

Higgs luminosity at ESS Seminar at Uppsala

- From 3.3 x 10¹⁴ p/pulse 3.5 x 10¹³ µ+ and 2.4 x 10¹³ µ- are generated. The cooling process efficiency is 0.4 and the acceleration efficiency to √s = 125 GeV is 0.6.
 N⁺N⁻
- The luminosity is given by a formula where: $L = f \frac{N N}{4\pi \varepsilon_{rms} \beta}$ > N⁺ = N⁻ = 7 x 10¹² µ/pulse
 - f is the number of effective luminosity crossings: 43 x 555 =23'865/s
 - ε_{rms} =ε_N/589.5 = 0.36 x 10⁻⁴ rad cm, with H₂ but no PIC cooling.
 - > B* = 5 cm is beta at crossing in both dimensions
- Luminosity is L = 5 x 10³² cm⁻² s⁻¹ for one collision crossing
- The cross section at the maximum averaged with $\Delta E = 3.4$ MeV is 1.0×10^{-35} cm². Hence the Ho event rate is 18 ev/h or 5 x 10⁴ ev for 10⁷ s/y . In 10 y and 2 crossings one million Ho events

• If PIC is successful ϵ_{rms} / 10 and 0.5 x 10⁶ events/year/i.p.

Uppsala_Feb_2016

Carlo Rubbia

Slide# : 44

ESSvSB at the European level

- A **H2020** Design Study has been submitted in 2014:
 - Decision:
 - Overall score 13.5/15 (5/5 for Excellence): not enough to be funded (only 15 MEUR for this call)
 - nevertheless, the evaluators recognised that ESSvSB answers one of the priorities defined in the European Strategy for Particle Physics.
- New application will be prepared for an ongoing EU H2020 call (deadline beginning 2017)
- COST application for networking has been succeeded: CA15139
 - **EuroNuNet** : Combining forces for a novel European facility for neutrino-antineutrino symmetry violation discovery (<u>http://www.cost.eu/COST_Actions/ca/CA15139</u>)
 - Major goals of EuroNuNet:
 - to aggregate the community of neutrino physics in Europe to study the ESSvSB concept in a spirit of inclusiveness,
 - to impact the priority list of High Energy Physics policy makers and of funding agencies to this new approach to the experimental discovery of leptonic CP violation.
 - 11 participating countries (network still growing).

Chicago, August 2016

ESS under construction

Chicago, August 2016

ESS Construction site

(February 2016)

- COST CA15139: 2016-2019 (just networking)
- EU H2020 Design Study: 2018-2021
- Decision for ESSvSB: 2022
- End of Linac construction: 2023
- Construction of ESSvSB: 2023-2030
- Data taking: 2030-2040.
- Rich muon program.
- A Design Study is needed.

- Significantly better CPV sensitivity at the 2nd oscillation maximum.
- The European Spallation Source Linac will be ready in less than 10 years (5 MW, 2 GeV proton beam by 2023).
- Neutrino Super Beam based on ESS linac is very promising.
- ESS will have enough protons to go to the 2nd oscillation maximum and increase its CPV sensitivity.
- CPV: 5 σ could be reached over 60% of δ_{CP} range (ESSvSB) with large potentiality.
- Large associated detectors have a rich astroparticle physics program.
- Rich muon program.
- A Design Study is needed.
- COST network project CA15139 supports this project.

Chicago, August 2016

DAR experiments (ESS/SNS)

Typical expected supernova neutrino spectrum for different flavours (solid lines) and SNS/ESS neutrino spectrum (dashed and dotted lines)

	-								
		SB		BB			\mathbf{NF}		
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)									
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated		correlated			
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated		correlated			
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \ \mathrm{QE}^{\star}$	3.5%	11%	_	3.5%	11%	_	—	_	_
Effec. ratio ν_e/ν_μ RES [*]	2.7%	5.4%	_	2.7%	5.4%	_	—	_	_
Effec. ratio ν_e/ν_μ DIS [*]	2.5%	5.1%	—	2.5%	5.1%	—	—	—	—
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

Phys. Rev. D 87 (2013) 3, 033004 [arXiv:1209.5973 [hep-ph]]

Chicago, August 2016

Effect of the unknown MH on Europeration performance

practically no need to re-optimize when MH will be known

Chicago, August 2016

CPV (2 GeV protons)

systematic errors (nominal values): 5%/10% for signal/background

more than 50% δ_{CP} coverage using reasonable assumptions on systematic errors

The MEMPHYS Detector (Proton decay)

(arXiv: hep-ex/0607026)

The MEMPHYS Detector (Supernova explosion)

Energy Deposition from secondary particles, 3 horns, ESSvSB -1.6 MW/EUROnu -1.3 MW

Hubert CURIEN

PHC Institut Pluridisciplinaire Hubert Curee Strasbourg

