Resonances in Coupled-Channel Scattering from Lattice QCD

David Wilson
for the Hadron Spectrum Collaboration

ICHEP 2016 Chicago
3rd-10th August
Extracting resonance properties

excited states seen as resonant enhancements in the scattering of lighter stable particles

Extracting resonance properties

excited states seen as resonant enhancements in the scattering of lighter stable particles

Infinite volume

Bound states

Meson-meson continuum

Finite volume
Resonances in coupled-channel scattering

Infinite volume phase shifts from a finite volume

\[\psi(0) = \psi(L), \quad \frac{\partial \psi}{\partial x} \bigg|_{x=0} = \frac{\partial \psi}{\partial x} \bigg|_{x=L} \]

\[\sin \left(\frac{pL}{2} + \delta(p) \right) = 0 \]

\[p = \frac{2\pi n}{L} - \frac{2}{L} \delta(p) \]

\[m_\pi = 236 \text{ MeV} \]
ρ resonance

Phase shifts via the Lüscher method:

\[
\tan \delta_1 = \frac{\pi^{3/2} q}{Z_{00}(1; q^2)}
\]

\[
Z_{00}(1; q^2) = \sum_{n \in \mathbb{Z}^3} \frac{1}{|\vec{n}|^2 - q^2}
\]

\[m_\pi = 236 \text{ MeV}\]
ρ resonance with moving frames

$P = [000]$
\[m_\pi = 236 \text{ MeV} \]
Resonances in coupled-channel scattering

\[t = \begin{pmatrix} \pi \pi \rightarrow \pi \pi & \pi \pi \rightarrow K \bar{K} \\ K \bar{K} \rightarrow \pi \pi & K \bar{K} \rightarrow K \bar{K} \end{pmatrix} \]

\[t^{-1} = K^{-1} - i\rho \]

e.g.: \(K_{ij} = \frac{g_i g_j}{m^2 - s} + \gamma_{ij} \)

\[m_\pi = 236 \text{ MeV} \]
ρ resonance into the coupled-channel region

PRD 92 094502, arXiv:1507.02599

E_{cm}/MeV

$m_\pi = 236$ MeV
An a_0 resonance

$\pi\eta$-$K\bar{K}$-$\pi\eta'$

$I = 1 \quad J = 0$

Figure 58. Partial wave analysis of the $K^-\pi^+\rightarrow K^-\pi^+$ amplitudes deduced from the LASS results of Fig. 57, showing the magnitude and phase for the S, P and D-waves.

Figure 59. Mass distribution for $\pi^0\eta$ from the GAMS experiment [11], where both π^0 and η are detected in the $\gamma\gamma$ decay.

Partial wave analysis reveals that the $J = 0$ wave has two possible resonances $a_0(980)$ and $a_0(1430)$ in this mass region.
Resonances in coupled-channel scattering

\(a_0 \) resonance - two channel region

\[\pi \eta - K \bar{K} \]

\[K_{ij} = \frac{g_i f_j}{m_i^2 - s} + \gamma_{ij} \]

\(m = (1254 \pm 16) \cdot \text{GeV} \)

\(g_{\pi \eta} = (515 \pm 16) \cdot \text{GeV} \)

\(g_{K \bar{K}} = (-730 \pm 85) \cdot \text{GeV} \)

\(\gamma_{\pi \eta, \pi \eta} = -0.16 \pm 0.24 \)

\(\gamma_{\pi \eta, K \bar{K}} = -0.56 \pm 0.29 \)

\(\gamma_{K \bar{K}, K \bar{K}} = 0.12 \pm 0.38 \)

\[\chi^2 / N_{\text{dof}} = \frac{58.0}{47 - 6} = 1.41 \]

\[m_\pi = 391 \text{ MeV} \]
\(a_0 \) resonance - two channel region

S-wave \(\pi\eta-K\bar{K} \)

\[m_\pi = 391 \text{ MeV} \]
a_0 resonance pole

\[t_{ij} \sim \frac{c_i c_j}{s_0 - s} \]

\[
\sqrt{s_0} = \left((1177 \pm 27) + \frac{i}{2} (49 \pm 33) \right) \text{ MeV}
\]

\[|c_{\pi\eta}| = 652(130) \text{ MeV} \]
\[|c_{K\bar{K}}| = 844(170) \text{ MeV} \]

\[m_\pi = 391 \text{ MeV} \]
The $f_0(500)/\sigma$ resonance

elastic scattering with
vacuum quantum numbers
$\pi\pi$ in $I = 0, J = 0$

\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]

\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]

\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]

\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]

\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]

\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]

\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]

\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]

\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
\[\begin{array}{c}
\pi
\end{array}\]
The $f_0(500)/\sigma$ resonance

elastic scattering with vacuum quantum numbers $\pi\pi$ in $I = 0, J = 0$

$m_\pi = 236$ MeV

$m_\pi = 391$ MeV
The $f_0(500)/\sigma$ resonance
The $f_0(500)/\sigma$ resonance

E_σ / MeV

$\frac{1}{2} \Gamma_\sigma$ / MeV

$\pi\pi_{\text{phys.}}$ $\pi\pi_{\text{thr.}}$ $\pi\pi_{\text{thr.}}$ $\pi\pi_{\text{thr.}}$ E_σ / MeV

$m_\pi = 391$ MeV

$m_\pi = 236$ MeV
Future directions

two-body coupled-channel

\[f_0(980) \]
\[D \bar{D} \]
\[D \bar{D}^* \]
\[N \pi \]
\[\gamma a \rightarrow bc \]

further operator structures - glueball, tetraquark, ...

formalism for three-body and beyond
- needed for higher energies
- needed to get closer to the physical mass
$m_\pi = 391$ MeV

Backup
Coupled-channel scattering

\[\text{a}_0(980), \text{f}_0(980) \]
\[\text{a}_1(1260) \]
\[\text{X}(3872), \text{and other XYZ states} \]
\[\text{N}^*(1440), \Lambda(1405), \ldots \]

all decay into multiple final states
all are resonant enhancements in multiple channels
to understand these rigorously, we need coupled-channel analyses
Coupled-channel scattering

Direct extension of the elastic quantization condition derived by Lüscher

\[\text{det} \left[1 + i \rho(E) \cdot t(E) \cdot (1 + i \mathcal{M}(E, L)) \right] = 0 \]

Many derivations, **all in agreement**:

- He, Feng, Liu 2005 - two channel QM, strong coupling
- Hansen & Sharpe 2012 - field theory, multiple two-body channels
- Briceño & Davoudi 2012 - strongly-coupled Bethe-Salpeter amplitudes
- Guo et al 2012 - Hamiltonian & Lippmann-Schwinger

Also derivations in specific channels, or for a specific parameterization of the interactions like NREFT, chiral PT, Finite Volume Hamiltonian, etc.

- Briceño 2014 - Generalised to scattering of particles with non-zero spin, and spin-$^{1/2}$.

Significant steps towards a general 3-body quantization condition have been made.
Amplitude parameterization

t = \begin{pmatrix} \pi\pi \to \pi\pi & \pi\pi \to \bar{K}K \\ K\bar{K} \to \pi\pi & K\bar{K} \to K\bar{K} \end{pmatrix}

\[\det \left[1 + i\rho(E) \cdot t(E) \cdot (1 + iM(E, L)) \right] = 0 \]
determinant condition:
- several unknowns at each value of energy
- energy levels typically do not coincide
- underconstrained problem for a single energy

one solution: use energy dependent parameterizations
- Constrained problem when \(\#(\text{energy levels}) > \#(\text{parameters})\)
- Essential amplitudes respect unitarity of the S-matrix

\[S^\dagger S = 1 \quad \Rightarrow \quad \text{Im} \; t^{-1} = -\rho \quad \rho_{ij} = \delta_{ij} \frac{2k_i}{E_{cm}} \]

K-matrix approach:
\[t^{-1} = K^{-1} - i\rho \quad \text{e.g.:} \; K_{ij} = \frac{g_i g_j}{m^2 - s} + \gamma_{ij} \]
ρ resonance pole near a pole:

\[t_{ij} \sim \frac{c_i c_j}{s_0 - s} \]

\[
\rho \text{ resonance pole}
\]
Other calculations

Coupled $\pi K - \eta K$

Combined S & P-wave analysis
80 energy levels from 3 volumes
arXiv:1406.4158, PRL 113 (2014) no.18, 182001

Coupled $D\pi - D\eta - D_s \bar{K}$

Combined S & P-wave analysis
3 coupled channels in S-wave
47 energy levels from 3 volumes
arXiv:1607.07093

$m_\pi = 391$ MeV
The $f_0(500)/\sigma$ resonance

$m_\pi = 236$ MeV

$m_\pi = 391$ MeV

p^2 / GeV^2
The $f_0(500)/\sigma$ resonance

from J. R. Pelaez, arXiv:1510.00653

Resonances in coupled-channel scattering

David Wilson

26
The $f_0(500)/\sigma$ resonance

from J. R. Pelaez, arXiv:1510.00653
An a_0 resonance

$\pi \eta - K \bar{K} - \pi \eta'$

$m_\pi = 391$ MeV
An a_0 resonance

$\pi\eta - K\bar{K} - \pi\eta'$

$m_\pi = 391$ MeV
An a_0 resonance - three channel region

$m_\pi = 391$ MeV
Poles

$m_\pi = 391$ MeV
Poles

$\pi^+\pi^- = 391$ MeV

$m_\pi = 391$ MeV
Extracting resonance properties

build a large basis of operators: $\mathcal{O}^\dagger \sim \bar{\psi} \Gamma \overleftrightarrow{D} ... \overleftrightarrow{D} \psi$

compute large correlation matrices: $C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^\dagger(0) | 0 \rangle$

solve GEVP: $C_{ij}(t)v_n^j = \lambda_n(t, t_0)C_{ij}(t_0)v_n^j$

$m_\pi = 236$ MeV
Extracting resonance properties

add in $\pi \pi$ operators using a variationally optimal pion $\pi^\dagger = \sum \nu^\pi_i O^\dagger_i$

combine in pairs $(\pi \pi)^\dagger = \sum_{\vec{p}_1 + \vec{p}_2 = \vec{P}} C(\vec{p}_1, \vec{p}_2) \pi^\dagger(\vec{p}_1) \pi^\dagger(\vec{p}_2)$

$m_\pi = 236$ MeV
Extracting resonance properties

essential to have operators that overlap onto “meson” and “meson-meson” contributions to the physical spectrum

\[[000] T_{1}^{-} \]

\[m_{\pi} = 236 \text{ MeV} \]
Determinant

\[t = (\pi\pi \rightarrow \pi\pi) \]

\[
\det \left[1 + i \rho \cdot t \cdot (1 + iM(L)) \right]
\]

\[a_t E_{cm} \]

\[\delta /^{\circ} \]

\[\delta_{\pi\pi} \]

Real

Imag
$t = (\pi\pi \rightarrow \pi\pi)$
Determinant

\[
\begin{pmatrix}
\pi\pi \rightarrow \pi\pi & 0 \\
0 & K\bar{K} \rightarrow K\bar{K}
\end{pmatrix}
\]

\[
\operatorname{det} \left[1 + i \rho \cdot t \cdot (1 + i M(L)) \right]
\]

\[
\delta^{\pi\pi}
\]

\[
\delta^{KK}
\]

\[
\eta
\]
\[t = \begin{pmatrix} \pi\pi \rightarrow \pi\pi & \pi\pi \rightarrow K\bar{K} \\ K\bar{K} \rightarrow \pi\pi & K\bar{K} \rightarrow K\bar{K} \end{pmatrix} \]

\[\det \left[1 + i \rho \cdot t \cdot (1 + i M(L)) \right] \]

\[\delta_{\pi\pi} \]

\[\delta_{K\bar{K}} \]

\[\eta \]

\[a_t E_{cm} \]
Determinant

\[
\begin{bmatrix}
\pi\pi \rightarrow \pi\pi & \pi\pi \rightarrow K\bar{K} \\
K\bar{K} \rightarrow \pi\pi & K\bar{K} \rightarrow K\bar{K}
\end{bmatrix}
\]

\[
\delta = \arctan \left(\frac{\text{Im}[t]}{\text{Re}[t]} \right)
\]

\[
\eta = \frac{1}{\sqrt{1 + \left(\frac{\text{Im}[t]}{\text{Re}[t]} \right)^2}}
\]
Determinant

\[t = \begin{pmatrix} \pi \pi \to \pi \pi & \pi \pi \to K\bar{K} \\ K\bar{K} \to \pi \pi & K\bar{K} \to K\bar{K} \end{pmatrix} \]

\[\det [1 + i \rho \cdot \hat{t} \cdot (1 + i \mathcal{M}(L))] \]

\[\delta^\pi \pi \]

\[\delta^K \bar{K} \]

\[\eta \]

\[a_t E_{cm} \]

David Wilson

Resonances in coupled-channel scattering
Chiral perturbation theory ρ extrapolation

$m_\rho = 754(3)(19)_{01}^{19}\text{MeV}$

$\Gamma_\rho = 129(3)(17)_{01}^{17}\text{MeV}$

$m_\pi = 140 \text{ MeV}$

δ_1 / ϕ

$E_{\pi\pi}^* [\text{MeV}]$

Lattice QCD + UχPT

Protopopescu et al.

Estabrooks and Martin

$E_{\pi\pi}^* / \text{MeV}$

δ_1 / ϕ

$m_\pi = 236 \text{ MeV}$, fit

$m_\pi = 140 \text{ MeV}$, postdiction

$m_\pi = 391 \text{ MeV}$, postdiction