Resonances in Coupled-Channel Scattering from Lattice QCD

David Wilson

for the Hadron Spectrum Collaboration

ICHEP 2016 Chicago 3rd-10th August

excited states seen as resonant enhancements in the scattering of lighter stable particles

excited states seen as resonant enhancements in the scattering of lighter stable particles

p resonance

Infinite volume phase shifts from a finite volume

p resonance

Phase shifts via the Lüscher method: $\tan \delta_1 = \frac{\pi^{3/2}q}{\mathcal{Z}_{00}(1;q^2)}$

$$\mathcal{Z}_{00}(1;q^2) = \sum_{n \in \mathbb{Z}^3} \frac{1}{|\vec{n}|^2 - q^2}$$

p resonance with moving frames

$$m_{\pi} = 236 \text{ MeV}$$

p resonance with moving frames

ρ resonance into the coupled-channel region

$$\mathbf{t} = \begin{pmatrix} \pi\pi \to \pi\pi & \pi\pi \to K\bar{K} \\ K\bar{K} \to \pi\pi & K\bar{K} \to K\bar{K} \end{pmatrix}$$

$$\mathbf{t}^{-1} = \mathbf{K}^{-1} - i\boldsymbol{\rho}$$

e.g.:
$$K_{ij} = \frac{g_i g_j}{m^2 - s} + \gamma_{ij}$$

ρ resonance into the coupled-channel region

PRD 92 094502, arXiv:1507.02599

An a₀ resonance

PRD 93 094506, arXiv:1602.05122

$$\pi \eta - K \bar{K} - \pi \eta'$$

$$I = 1 \ J = 0$$

GAMS, Alde et al PLB 203 397, 1988.

a₀ resonance - two channel region

$$\pi\eta$$
- $Kar{K}$

$$K_{ij} = \frac{g_i g_j}{m^2 - s} + \gamma_{ij}$$

a₀ resonance - two channel region

S-wave $\pi\eta$ - $K\bar{K}$

a₀ resonance pole

$$t_{ij} \sim \frac{c_i c_j}{s_0 - s}$$

$$m_{\pi} = 391 \text{ MeV}$$

elastic scattering with vacuum quantum numbers $\pi\pi$ in $I=0,\,J=0$

arXiv:1607.05900

elastic scattering with vacuum quantum numbers $\pi\pi$ in $I=0,\,J=0$

$$m_{\pi} = 236 \text{ MeV}$$

$$m_{\pi} = 391 \text{ MeV}$$

arXiv:1607.05900

Future directions

two-body coupled-channel

$$f_0(980)$$
 $D\bar{D}$
 $D\bar{D}^*$
 $N\pi$
 $\gamma a \to bc$

further operator structures - glueball, tetraquark, ...

formalism for three-body and beyond

- needed for higher energies
- needed to get closer to the physical mass

Backup

Coupled-channel scattering

 $a_0(980), f_0(980)$ $a_1(1260)$ X(3872), and other XYZ states $N^*(1440), \Lambda(1405), ...$

all decay into multiple final states
all are resonant enhancements in multiple channels
to understand these rigorously, we need coupled-channel analyses

1000

 $M(\pi^+\pi^-J/\psi)$ - $M(J/\psi)$ [MeV]

1200

600

1400

Coupled-channel scattering

Direct extension of the elastic quantization condition derived by Lüscher

Many derivations, all in agreement:

He, Feng, Liu 2005 - two channel QM, strong coupling Hansen & Sharpe 2012 - field theory, multiple two-body channels Briceño & Davoudi 2012 - strongly-coupled Bethe-Salpeter amplitudes Guo et al 2012 - Hamiltonian & Lippmann-Schwinger

Also derivations in specific channels, or for a specific parameterization of the interactions like NREFT, chiral PT, Finite Volume Hamiltonian, etc.

Briceño 2014 - Generalised to scattering of particles with non-zero spin, and spin-1/2.

Significant steps towards a general 3-body quantization condition have been made

Amplitude parameterization

$$\mathbf{t} = \begin{pmatrix} \pi\pi \to \pi\pi & \pi\pi \to K\bar{K} \\ K\bar{K} \to \pi\pi & K\bar{K} \to K\bar{K} \end{pmatrix}$$

$$\det \left[\mathbf{1} + i \boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot (\mathbf{1} + i \boldsymbol{\mathcal{M}}(E, L)) \right] = 0$$

determinant condition:

- several unknowns at each value of energy
- energy levels typically do not coincide
- underconstrained problem for a single energy

one solution: use energy dependent parameterizations

- Constrained problem when #(energy levels) > #(parameters)
- Essential amplitudes respect unitarity of the S-matrix

$$\mathbf{S}^{\dagger}\mathbf{S} = \mathbf{1} \quad \rightarrow \quad \operatorname{Im} \mathbf{t}^{-1} = -\boldsymbol{\rho} \qquad \rho_{ij} = \delta_{ij} \frac{2k_i}{E_{cm}}$$

K-matrix approach:

$$\mathbf{t}^{-1} = \mathbf{K}^{-1} - i\boldsymbol{\rho}$$
 e.g.: $K_{ij} = \frac{g_i g_j}{m^2 - s} + \gamma_{ij}$

p resonance pole

Other calculations

Combined S & P-wave analysis 80 energy levels from 3 volumes arXiv:1406.4158, PRL 113 (2014) no.18, 182001

Combined S & P-wave analysis 3 coupled channels in S-wave 47 energy levels from 3 volumes arXiv:1607.07093

An a₀ resonance

$$\pi\eta$$
- $Kar{K}$ - $\pi\eta'$

An a₀ resonance - three channel region

Poles

Poles

$$m_{\pi} = 391 \text{ MeV}$$

build a large basis of operators: $\mathcal{O}^{\dagger} \sim \bar{\psi} \Gamma \overleftrightarrow{D} ... \overleftrightarrow{D} \psi$

compute large correlation matrices: $C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0 \rangle$

solve GEVP:

$$C_{ij}(t)v_j^{\mathfrak{n}} = \lambda_{\mathfrak{n}}(t, t_0)C_{ij}(t_0)v_j^{\mathfrak{n}}$$

add in $\pi\pi$ operators using a variationally optimal pion $\pi^{\dagger} = \sum_{i} v_{i}^{\pi} \mathcal{O}_{i}^{\dagger}$ combine in pairs $(\pi\pi)^{\dagger} = \sum_{\vec{p_{1}}+\vec{p_{2}}=\vec{P}} \mathcal{C}(\vec{p_{1}},\vec{p_{2}})\pi^{\dagger}(\vec{p_{1}})\pi^{\dagger}(\vec{p_{2}})^{\dagger}$

essential to have operators that overlap onto "meson" and "meson-meson" contributions to the physical spectrum

 $[000]T_1^-$

Chiral perturbation theory p extrapolation

