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ρ resonance 
Infinite volume phase shifts from a finite volume

m⇡ = 236 MeV
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ρ resonance 
Phase shifts via the Lüscher method:
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ρ resonance with moving frames
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m⇡ = 236 MeV
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ρ resonance with moving frames
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ρ resonance into the coupled-channel region

m⇡ = 236 MeV
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gigj
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ρ resonance into the coupled-channel region
PRD 92 094502, arXiv:1507.02599

m⇡ = 236 MeV
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An a0 resonance

m⇡ = 391 MeV

PRD 93 094506, arXiv:1602.05122
Figure 58. Partial wave analysis of the K−π+ → K−π+ amplitudes deduced from the
LASS results of Fig. 57, showing the magnitude and phase for the S , P and D-waves [103].

Figure 59. Mass distribution for π0η from the GAMS experiment [11] on π−p → (π0η)n ,
where both π0 and η are detected in the γγ decay mode. Partial wave analysis reveals that
the J = 0 wave has two possible resonances a0(980) and a0(1430) in this mass region.

a0(980) a0(1430)

GAMS, Alde et al PLB 203 397, 1988.

⇡+p ! (⇡0⌘)n

E
⇡⌘|thr. KK̄|thr.}

a0(980)
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Fig. 9. Results for the ππ cross section. The curves are results
based on Flatté distributions taken from the Refs. [14,15,16,
17].
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Fig. 10. πη phase shift δ in the J = 0, I = 1 partial wave.
The curves are results based on Flatté distributions taken from
Refs. [8,9,12,13].
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Fig. 11. Inelasticity in the πη J = 0, I = 1 partial wave. The
curves are results based on Flatté parameters taken from Refs.
[8,9,12,13].
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wave. The curves are results based on Flatté parameters taken
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a0 resonance - two channel region

m⇡ = 391 MeV

⇡⌘-KK̄

Kij =
gigj
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m = ( 1254± 16) ·GeV
2

6666664

1 0.58 �0.06 �0.51 0.39 0.02
1 �0.63 �0.87 0.84 �0.49

1 0.52 �0.68 0.83
1 �0.90 0.53

1 �0.78
1

3

7777775

g⇡⌘ = ( 515± 16) ·GeV
gK¯K = (�730± 85) ·GeV

�⇡⌘,⇡⌘ = �0.16± 0.24
�⇡⌘, K¯K = �0.56± 0.29
�K¯K,K¯K = 0.12± 0.38
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m⇡ = 391 MeV

a0 resonance - two channel region
S-wave
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m⇡ = 391 MeV

a0 resonance pole
tij ⇠

cicj
s0 � s
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The f0(500)/� resonance

elastic scattering with
vacuum quantum numbers
⇡⇡ in I = 0, J = 0

300 400 500 600 700 800 900 1000 1100 1200 1300 1400
s1/2 (MeV)

0

30

60

90

120

150

180

210

240

270

300

330

 δ
0

0(s)

Solution B 
Solution A
Solution C 
Solution D
Solution E
Protopopescu et al.  (Table VI)
Estabrooks & Martin s-channel
Estabrooks & Martin t-channel
Kaminski et al.

Grayer et al.

300 400 500 600 700 800 900 1000
s1/2 (MeV)

0

30

60

90

120

150

 δ
1
(s)

Protopopescu et al. 

Estabrooks & Martin

Figure 2: Data on ⇡⇡ ! ⇡⇡ scattering phase shifts: Protopopescu et al. from [31], Grayer et al. from [33] (Solution
B also from [32]), Estabrooks and Martin from [35], Kaminski et al. from[36]. Left panel: The scalar-isoscalar phase
shift �(0)

0 . Note the huge di↵erences due to systematic uncertainties, which exist even within data sets from the same
experimental collaboration [33] (Something similar happens with [31], but we only show the most commonly used and
consistent data set). Please note that there is no Breit-Wigner-like sharp increase of 180o on the phase between threshold
and 800 MeV. Such sharp phase increase is seen around 980 MeV, corresponding to the f0(980) meson, although starting
over a background phase of about 100o degrees. Right panel: For comparison we also show the vector-isovector �1 phase
shift, where the ⇢(770) resonance can be seen to follow the familiar Breit-Wigner shape [38] to a very good degree of
approximation.

Sometimes, as in [33], statistical uncertainties were provided for each set of solutions. However,
since these data sets are incompatible among themselves within statistical uncertainties, the dif-
ferences between sets should be interpreted as an indication of the systematic uncertainty. As an
example, the left panel of Fig.2 displays the data on ⇡⇡! ⇡⇡ scattering phase shifts of the scalar
isoscalar wave. Note the large di↵erences even within data sets coming from the same exper-
iment [33] (Solution B was published first in [32]) due to systematic uncertainties. Something
similar happens with [31], but we only show the most commonly used data set, since it will be
seen later that the others are even more inconsistent with fundamental dispersive constraints.

Another relevant indication of the interest on ⇡⇡ scattering in the early seventies was the
appearance of Ke4 experiments [39, 40]. These correspond to the K ! ⇡⇡e⌫ decay and provide
an indirect measurement of the �00 � �1 phase combination well below 500 MeV, a region that
could not be reached with ⇡N ! ⇡⇡N experiments. At that time these low energy data were not
very determinant in the � discussion, but we will see that recent Ke4 experiments have actually
been decisive to enter the precision era for light scalars.

At this point, and in view of Fig.2 it is important to emphasize that the � is so wide that
right from the very beginning it was clear that the familiar Breit-Wigner description [38], valid
for narrow isolated resonances, is not appropriate to describe the S-wave data. Actually, note in
Fig.2 that there is no isolated Breit-Wigner shape around 500-600 MeV, corresponding to a � or
f0(500) resonance. This means that the � resonance does not appear as a peak in the ⇡⇡ ! ⇡⇡
cross section nor in many other amplitudes which contain in the final state two pions with the
quantum numbers of the f0(500). Of course, a Breit-Wigner-like shape over a background phase
of about 100 degrees is seen around 980 MeV in Fig.2, corresponding to the f0(980), but even
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The f0(500)/� resonance
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The f0(500)/� resonance
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The f0(500)/� resonance
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Future directions
two-body coupled-channel

further operator structures - glueball, tetraquark, ...

formalism for three-body and beyond
 - needed for higher energies
 - needed to get closer to the physical mass

f0(980)

DD̄

DD̄?

N⇡

�a ! bc

π

γ

π

π

Briceño et al, Phys.Rev.Lett. 115 (2015) 

π π
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Backup
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Coupled-channel scattering

a0(980), f0(980)
a1(1260)
X(3872), and other XYZ states
N★(1440), 𝝠(1405), ...

all decay into multiple final states
all are resonant enhancements in multiple channels
to understand these rigorously, we need coupled-channel analyses

Combinations of Kþ!"!þ candidates that are consis-
tent with originating from a common vertex with
"2
vtxðKþ!"!þÞ=ndf < 9, with each charged hadron (h)

separated from all PVs ["2
IPðhÞ> 9] and having pTðhÞ>

0:25 GeV, are selected. The quantity "2
IPðhÞ is defined as

the difference between the "2 of the PV reconstructed with
and without the considered particle. Kaon and pion candi-
dates are required to satisfy ln½LðKÞ=Lð!Þ&> 0 and <5,
respectively, where L is the particle identification like-
lihood [22]. If both same-sign hadrons in this combination
meet the kaon requirement, only the particle with higher
pT is considered a kaon candidate. We combine J=c
candidates with Kþ!"!þ candidates to form Bþ candi-
dates, which must satisfy "2

vtxðJ=cKþ!"!þÞ=ndf < 9,
pTðBþÞ> 2 GeV and have decay time greater than
0.25 ps. The J=cKþ!"!þ mass is calculated using the
known J=c mass and the B vertex as constraints.

Four discriminating variables (xi) are used in a like-
lihood ratio to improve the background suppression: the
minimal "2

IPðhÞ, "2
vtxðJ=cKþ!þ!"Þ=ndf, "2

IPðBþÞ, and
the cosine of the largest opening angle between the J=c
and the charged-hadron transverse momenta. The latter
peaks at positive values for the signal, as the Bþ meson
has a high transverse momentum. Background events in
which particles are combined from two different B decays
peak at negative values, while those due to random combi-
nations of particles are more uniformly distributed. The
four 1D signal probability density functions (PDFs)
P sigðxiÞ are obtained from a simulated sample of Bþ !
c ð2SÞKþ, c ð2SÞ ! !þ!"J=c decays, which are kine-
matically similar to the signal decays. The data sample of
Bþ ! c ð2SÞKþ events is used as a control sample for
P sigðxiÞ and for systematic studies in the angular analysis.

The background PDFs P bkgðxiÞ are obtained from the data

in the Bþ mass sidebands (4.85–5.10 and 5.45–6.50 GeV).
We require "2

P4
i¼1 ln½P sigðxiÞ=P bkgðxiÞ&< 1:0, which

preserves about 94% of the Xð3872Þ signal events.
About 38000 candidates are selected in a (2#

mass range around the Bþ peak in the MðJ=c!þ!"KþÞ
distribution, with a signal purity of 89%. The !M ¼
Mð!þ!"J=c Þ "MðJ=c Þ distribution is shown in
Fig. 1. Fits to the c ð2SÞ and Xð3872Þ signals are shown
in the insets. A Crystal Ball function [23] with symmetric
tails is used for the signal shapes. The background is
assumed to be linear. The c ð2SÞ fit is performed in the
539.2–639.2 MeV range leaving all parameters free to vary.
It yields 5642( 76 signal (230( 21 background) candi-
dates with a !M resolution of #!M ¼ 3:99( 0:05 MeV,
corresponding to a signal purity of 99.2% within a
(2:5#!M region. When fitting in the 723–823 MeV
range, the signal tail parameters are fixed to the values
obtained in the c ð2SÞ fit, which also describe well
the simulated Xð3872Þ signal distribution. The fit yields
313( 26 Bþ ! Xð3872ÞKþ candidates with a resolution
of 5:5( 0:5 MeV. The number of background candidates

is 568( 31 including the sideband regions. The signal
purity is 68% within a (2:5#!M signal region. The domi-
nant source of background is from Bþ ! J=cK1ð1270Þþ,
K1ð1270Þþ ! Kþ!þ!" decays, as found by studying the
Kþ!þ!" mass distribution.
The angular correlations in the Bþ decay carry infor-

mation about the Xð3872Þ quantum numbers. To discri-
minate between the 1þþ and 2"þ assignments, we use a
likelihood-ratio test, which in general provides the most
powerful discrimination between two hypotheses [24].
The PDF for each JPC hypothesis JX is defined in the
5D angular space " ) ðcos$X; cos$!!;!%X;!!; cos$J=c ;
!%X;J=c Þ by the normalized product of the expected
decay matrix element (M) squared and of the reconstruc-
tion efficiency (&), P ð"jJXÞ ¼ jMð"jJXÞj2&ð"Þ=IðJXÞ,
where IðJXÞ ¼

R jMð"jJXÞj2&ð"Þd". The efficiency is
averaged over the!þ!" mass [Mð!!Þ] using a simulation
[25–29] that assumes the Xð3872Þ ! 'ð770ÞJ=c ,
'ð770Þ ! !þ!" decay [7,17,30]. The observed Mð!!Þ
distribution is in good agreement with this simulation. The
line shape of the 'ð770Þ resonance can change slightly
depending on the spin hypothesis. The effect on &ð"Þ is
found to be very small and is neglected. We follow the
approach adopted in Ref. [13] to predict the matrix ele-
ments. The angular correlations are obtained using the
helicity formalism,

jMð"jJXÞj2 ¼
X

!()¼"1;þ1

!!!!!!!!
X

(J=c ;(!!¼"1;0;þ1

A(J=c ;(!!

*DJX
0;(J=c"(!!

ð%X; $X;"%XÞ
*D1

(!!;0
ð%!!; $!!;"%!!Þ

*D1
(J=c ;!()

ð%J=c ; $J=c ;"%J=c Þ
!!!!!!!!

2
;

)  [MeV]ψ) - M(J/ψJ/-π+πM(
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FIG. 1 (color online). Distribution of !M for Bþ !
J=cKþ!þ!" candidates. The fits of the c ð2SÞ and Xð3872Þ
signals are displayed. The solid blue, dashed red, and dotted
green lines represent the total fit, signal component, and back-
ground component, respectively.

PRL 110, 222001 (2013) P HY S I CA L R EV I EW LE T T E R S
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31 MAY 2013
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Figure 2: Data on ⇡⇡ ! ⇡⇡ scattering phase shifts: Protopopescu et al. from [31], Grayer et al. from [33] (Solution
B also from [32]), Estabrooks and Martin from [35], Kaminski et al. from[36]. Left panel: The scalar-isoscalar phase
shift �(0)

0 . Note the huge di↵erences due to systematic uncertainties, which exist even within data sets from the same
experimental collaboration [33] (Something similar happens with [31], but we only show the most commonly used and
consistent data set). Please note that there is no Breit-Wigner-like sharp increase of 180o on the phase between threshold
and 800 MeV. Such sharp phase increase is seen around 980 MeV, corresponding to the f0(980) meson, although starting
over a background phase of about 100o degrees. Right panel: For comparison we also show the vector-isovector �1 phase
shift, where the ⇢(770) resonance can be seen to follow the familiar Breit-Wigner shape [38] to a very good degree of
approximation.

Sometimes, as in [33], statistical uncertainties were provided for each set of solutions. However,
since these data sets are incompatible among themselves within statistical uncertainties, the dif-
ferences between sets should be interpreted as an indication of the systematic uncertainty. As an
example, the left panel of Fig.2 displays the data on ⇡⇡! ⇡⇡ scattering phase shifts of the scalar
isoscalar wave. Note the large di↵erences even within data sets coming from the same exper-
iment [33] (Solution B was published first in [32]) due to systematic uncertainties. Something
similar happens with [31], but we only show the most commonly used data set, since it will be
seen later that the others are even more inconsistent with fundamental dispersive constraints.

Another relevant indication of the interest on ⇡⇡ scattering in the early seventies was the
appearance of Ke4 experiments [39, 40]. These correspond to the K ! ⇡⇡e⌫ decay and provide
an indirect measurement of the �00 � �1 phase combination well below 500 MeV, a region that
could not be reached with ⇡N ! ⇡⇡N experiments. At that time these low energy data were not
very determinant in the � discussion, but we will see that recent Ke4 experiments have actually
been decisive to enter the precision era for light scalars.

At this point, and in view of Fig.2 it is important to emphasize that the � is so wide that
right from the very beginning it was clear that the familiar Breit-Wigner description [38], valid
for narrow isolated resonances, is not appropriate to describe the S-wave data. Actually, note in
Fig.2 that there is no isolated Breit-Wigner shape around 500-600 MeV, corresponding to a � or
f0(500) resonance. This means that the � resonance does not appear as a peak in the ⇡⇡ ! ⇡⇡
cross section nor in many other amplitudes which contain in the final state two pions with the
quantum numbers of the f0(500). Of course, a Breit-Wigner-like shape over a background phase
of about 100 degrees is seen around 980 MeV in Fig.2, corresponding to the f0(980), but even
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Coupled-channel scattering

Many derivations, all in agreement:

He, Feng, Liu 2005 - two channel QM, strong coupling
Hansen & Sharpe 2012 - field theory, multiple two-body channels
Briceño & Davoudi 2012 - strongly-coupled Bethe-Salpeter amplitudes
Guo et al 2012 - Hamiltonian & Lippmann-Schwinger

Also derivations in specific channels, or for a specific parameterization of  the interactions like 
NREFT, chiral PT, Finite Volume Hamiltonian, etc.

Briceño 2014 - Generalised to scattering of  particles with non-zero spin, and spin-½.

Significant steps towards a general 3-body quantization condition have been made 

infinite volume scattering 
t-matrix

known finite-volume 
functionsphase space

Direct extension of  the elastic quantization condition derived by Lüscher

det [1+ i⇢(E) · t(E) · (1+ iM(E,L))] = 0
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Amplitude parameterization

determinant condition:
- several unknowns at each value of  energy
- energy levels typically do not coincide
- underconstrained problem for a single energy

one solution: use energy dependent parameterizations
- Constrained problem when #(energy levels) > #(parameters)
- Essential amplitudes respect unitarity of  the S-matrix

t =

✓
⇡⇡ ! ⇡⇡ ⇡⇡ ! KK̄
KK̄ ! ⇡⇡ KK̄ ! KK̄

◆

S†S = 1 ! Im t�1 = �⇢

t�1 = K�1 � i⇢
K-matrix approach:

Kij =
gigj

m2 � s
+ �ije.g.:

⇢ij = �ij
2ki
Ecm

det [1+ i⇢(E) · t(E) · (1+ iM(E,L))] = 0
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ρ resonance pole
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Other calculations
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Combined S & P-wave analysis
80 energy levels from 3 volumes
arXiv:1406.4158, PRL 113 (2014) no.18, 182001

Combined S & P-wave analysis
3 coupled channels in S-wave
47 energy levels from 3 volumes
arXiv:1607.07093

m⇡ = 391 MeV



-1

-0.5

 0

 0.5

 1

-0.06 -0.03  0  0.03  0.06  0.09  0.12

David Wilson 25Resonances in coupled-channel scattering

The f0(500)/� resonance
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Figure 4: The � or f0(400 � 1400) resonance poles listed in the RPP 1996 edition (Black squares) together with those
also cited in the 2010 edition [70] (Red circles). Note the much better consistency of the latter and the general absence
of uncertainties in the former. The huge light gray area corresponds to the uncertainty band assigned to the � from 1996
to 2010.

before, a very significant part of the apparent disagreement between di↵erent poles in Fig.2 is
not coming from experimental uncertainties when extracting the data, but from the use of models
in the interpretation of those data and unreliable extrapolations to the complex plane. Actually,
di↵erent analyses of the same experiment could provide dramatically di↵erent poles, depending
on the parameterization or model used to describe the data and its later interpretation in terms of
poles and resonances. Maybe the most radical example are the three poles from the Crystal Barrel
collaboration, lying at (1100� i300) MeV [68], (400� i500) MeV and (1100� i137) MeV [69],
corresponding to the highest masses and widths in that plot. These poles were compiled together
in the RPP although they even lie in di↵erent Riemann sheets. Moreover we will see in Sect.2
that all three lie outside the region of analyticity of the partial wave expansion (Lehmann-Martin
ellipse [71]).

Therefore it should be now clear that in order to extract the parameters of the � pole, which
lies so deep in the complex plane and has no evident fast phase-shift motion, it is not enough to
have a good description of the data. As a matter of fact, many functional forms could fit very
well the data in a given region, but then di↵er widely with each other when extrapolated outside
the fitting region. For instance, if all data were consistent (which they are not) one can always
find a good data description using polynomials, or splines, which have no poles at all. Hence, to
look for the � pole, the correct analytic extension to the complex plane, or at least a controlled
approximation to it, is needed. Unfortunately that has not always been the case in many analyses,
and thus the poles obtained from poor analytic extensions of an otherwise nice experimental
analysis are at risk of being artifacts or just plain wrong determinations. This, together with the
huge uncertainty attached to the � in the RPP, is what made many people outside the community
to think that no progress was made in the light scalar sector for many decades.

However, progress was being made and the other remarkable feature of Fig.2 is that by 2010
most determinations agreed on a light sigma with a mass between 400 and 550 MeV and a half

13
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The f0(500)/� resonance from J. R. Pelaez, arXiv:1510.00653
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The f0(500)/� resonance from J. R. Pelaez, arXiv:1510.00653
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Figure 7: Left panel: Compilation of f0(500) or � resonance poles in the 2012 RPP edition. The light gray area stands
for the uncertainty assigned to the � poles from 1996 until 2010. The darker gray rectangle is the new uncertainty
estimated in the summary tables, Eq.(1). Right panel: Detail of the new uncertainty band. We only show the four
“most advanced dispersive analyses” according to the 2012 RPP and as a darker area the “more radical” and “restricted
range of f0(500) parameters”, Eq.(2), if one averages those four analyses. The dashed rectangle corresponds to the
“conservative dispersive estimate”

p
s� = 449+22

�16 � i(275 ± 12)MeV which, as explained in the text, takes into account
that the di↵erences between these four dispersive approaches are of systematic nature.

pole based on data descriptions consistent with dispersive constraints, and whose poles are ob-
tained from sound analytic extrapolations to the complex planes, should be taken into account.
Of course, this was well known to the RPP authors and that is why in the 2012 RPP “Note on
scalar mesons below 2 GeV”, they suggested that “One might also take the more radical point
of view and just average the most advanced dispersive analyses, [97, 111, 116, 117]...”, which
we show in the right panel of Fig.7, “which provide a determination with minimal bias”. By
averaging the values obtained in those four references a more restricted range of parameters is
estimated at the 2012 RPP:

p
s� = (446 ± 6) � i(276 ± 5)MeV (RPP2012 restricted range) (2)

In the left panel of Fig.7, the area covered by this “restricted” uncertainty would be almost
imperceptible within the darker rectangle, and hence we show in the right panel an expanded
view of the darker rectangle and just the “most advanced dispersive analyses” according to the
2012 RPP. Thus the “restricted range of parameters” corresponds to the smallest and even darker
rectangle in the middle of the plot.

At the risk of being annoying, these uncertainties may now be too small, since the di↵er-
ences between those four determinations are more of a systematic than statistical nature. Thus,
weighting them as if the uncertainties and di↵erences were statistical to obtain an even smaller
uncertainty is somewhat optimistic. Moreover, an uncertainty of less than 3% is hard to achieve
due to isospin breaking e↵ects, which are not incorporated into these formalisms (except maybe
in the experimental uncertainties), and to the absence of 4⇡ channels, although we have seen
above that this e↵ect is very small. A suggestion would be to take as a conservative dispersive
estimate the band that covers [111] and [116], since the pole in [97] was not really calculated
with the analytic extension of Roy equations but from the phenomenological representation and
can be considered superseded by the results of [111]. In addition the result of [117] lies within
this estimate (it uses results from the [97, 111] group as input). That is:

p
s� = 449+22

�16 � i(275 ± 12)MeV (Conservative dispersive estimate) (3)
20
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An a0 resonance

m⇡ = 391 MeV
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An a0 resonance
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Poles
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Cij(t)v
n
j = �n(t, t0)Cij(t0)v

n
j

0.10

0.15

0.20

David Wilson 35Resonances in coupled-channel scattering

Extracting resonance properties
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compute large correlation matrices:

solve GEVP:
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(⇡⇡)† =
X
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Extracting resonance properties
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Extracting resonance properties
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Chiral perturbation theory ρ extrapolation


