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1 Antilinearity and the reality of eigenvalues

Beginning in 1998 with the work of Bender and collaborators it was rigorously established that the eigenvalues

of the manifestly non-Hermitian Hamiltonian H = p2 + ix3 were all real. This reality was traced to the

existence of an underlying antilinear PT symmetry that H possessed. (H is invariant under p→ p, x→ −x,

i→ −i).
To see the implications of an antilinear symmetry such as PT , consider the eigenvector equation

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 = E|ψ(t)〉. (1)

On replacing the parameter t by −t and then multiplying by some general antilinear operator A (i.e. not

necessarily PT itself), we obtain

i
∂

∂t
A|ψ(−t)〉 = AHA−1A|ψ(−t)〉 = E∗A|ψ(−t)〉. (2)

If H has an antilinear symmetry so that AHA−1 = H , then, as first noted by Wigner in his study of time

reversal invariance, energies can either be real and have eigenfunctions that obey A|ψ(−t)〉 = |ψ(t)〉, or can

appear in complex conjugate pairs that have conjugate eigenfunctions (|ψ(t)〉 ∼ exp(−iEt) and A|ψ(−t)〉 ∼
exp(−iE∗t)). Hermiticity is only SUFFICIENT to secure real eigenvalues.

As to the converse, suppose we are given that the energy eigenvalues are real or appear in complex conjugate

pairs. In such a case not only would E be an eigenvalue but E∗ would be too. Hence, we can set HA|ψ(−t)〉 =

E∗A|ψ(−t)〉 in (2), and obtain

(AHA−1 −H)A|ψ(−t)〉 = 0. (3)

Then if the eigenstates of H are complete, (3) must hold for every eigenstate, to yield AHA−1 = H as an
operator identity, with H thus having an antilinear symmetry. Antilinearity is thus the NECESSARY
condition for the reality of energy eigenvalues.
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2 A Simple Example

The matrix

M =

(
1 + i s

s 1− i

)
(4)

with real s is PT symmetric (set P = σ1 and T = K where K denotes complex conjugation).
Even though this M is not Hermitian, its eigenvalues are given by

E± = 1± (s2 − 1)1/2, (5)

and both of these eigenvalues are real if s is greater than one. Moreover, these eigenvalues come in complex conjugate pairs
if s is less than one. In addition if s = 1 M is a non-diagonalizable Jordan-block Hamiltonian with only one eigenvector
despite having two solutions to M − λI = 0 (both with λ = 1), and cannot be diagonalized by a similarity transformation:

(
1 0
i 1

) (
1 + i 1

1 1− i

) (
1 0
−i 1

)
=

(
1 1
0 1

)
,

(
1 1
0 1

) (
a

b

)
=

(
a+ b

b

)
=

(
a

b

)
→

(
1
0

)
. (6)

As well as see the generic pattern of eigenvalues, we also see that by varying parameters we can continue from one
realization of antilinear symmetry to another, crossing through, and in fact necessarily crossing through, the Jordan-block
case on the way, as the transition from all real eigenvalues to complex pairs must be singular. For both s > 1 and s < 1
M has a complete set of eigenvectors and can be diagonalized, with its diagonal form being Hermitian when s > 1. When
s > 1 M is thus “Hermitian in disguise”, with the utility of antilinear symmetry being that without it, it is guaranteed that
a Hamiltonian is not Hermitian in disguise.

The Jordan-block situation is a case where the Hamiltonian is manifestly non-diagonalizable and thus manifestly non-
Hermitian and yet all eigenvalues are real. While Hermiticity implies reality of eigenvalues, reality of eigenvalues does not im-

ply Hermiticity or even Hermiticity in disguise. The conformal gravity theory with action IW = −αg
∫
d4x(−g)1/2CλµνκC

λµνκ

where Cλµνκ is the Weyl conformal tensor also falls into the Jordan-block category (Bender and Mannheim 2008, Mannheim
2011, Mannheim 2012), and is able to be ghost free and unitary at the quantum level because of it, to thus provide a
fully consistent quantum theory of gravity without any of the string theory need for supersymmetry or extra spacetime
dimensions.
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3 Probability Conservation

Consider a right eigenstate of H in which H acts to the right as i∂t|R(t)〉 = H|R(t)〉 with solution |R(t)〉 =

exp(−iHt)|R(0)〉. The Dirac norm

〈R(t)|R(t)〉 = 〈R(0)| exp(iH†t) exp(−iHt)|R(0)〉 (7)

is not time independent ifH is not Hermitian, and would not describe unitary time evolution. However, this only

means that the Dirac norm is not unitary, not that no norm is unitary. Moreover, since i∂t|R(t)〉 = H|R(t)〉
only involves ket vectors, there is some freedom in choosing bra vectors. So let us introduce a more general

scalar product 〈R(t)|V |R(t)〉 with some as yet to be determined V , which we take to be time independent.

We find

i
∂

∂t
〈Rj(t)|V |Ri(t)〉 = 〈Rj(t)|(V H −H†V )|Ri(t)〉. (8)

Thus if we set V H −H†V = 0, then all scalar products will be time independent and probability is conserved

(and V will indeed be time independent if H is). For the converse we note if we are given that all V scalar

products are time independent, then if the set of all |Ri(t)〉 is complete we would obtain V H − H†V = 0

as an operator identity. The condition V H − H†V = 0 is thus both necessary and sufficient for the time

independence of the V scalar products 〈R(t)|V |R(t)〉.
Since V obeys V H−H†V = 0, V depends on the particular Hamiltonian. Thus unlike the Dirac norm, now

the theory dynamically determines its own norm each time. Just like general relativity (gµν metric determined

dynamically) vis a vis special relativity (Minkowski ηµν metric preassigned).

Now if V H −H†V = 0, we can set V H|ψ〉 = EV |ψ〉 = H†V |ψ〉. Consequently H and H† have the same

set of eigenvalues, i.e. for every E there is an E∗. (Also follows from H† = V HV −1, an isospectral similarity

transformation.) Energy eigenvalues are thus either real or in complex conjugate pairs. Consequently, H

must have an antilinear symmetry.
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For the two-dimensional matrix M above for instance, we have

M =

 1 + i s

s 1− i

 , V = (s2 − 1)−1/2
 s −i
i s

 , V MV −1 = M †. V singular when s = 1. (9)

To reinforce the point we note that if |Ri(t)〉 is a right-eigenstate of H with energy eigenvalue Ei = ER
i +iEI

i ,

in general we can write

〈Rj(t)|V |Ri(t)〉 = 〈Rj(0)|V |Ri(0)〉e−i(E
R
i +iEIi )t+i(ERj −iEIj )t. (10)

Since V has been chosen so that the 〈Rj(t)|V |Ri(t)〉 scalar products are time independent, the only allowed

non-zero norms are those that obey

ER
i = ER

j , EI
i = −EI

j , (11)

with all other V -based scalar products having to obey 〈Rj(0)|V |Ri(0)〉 = 0. We recognize (11) as being

precisely none other than the requirement that eigenvalues be real or appear in complex conjugate pairs, with

H thus possessing an antilinear symmetry.

Ordinarily in discussing decays one only keeps modes e−i(ER+iEI)t with negative imaginary part EI . However

now we keep both decaying and growing modes, with probability being conserved since the only transitions

allowed by (11) are those in which the decaying mode couples to its growing partner, so that as the population

of the decaying mode decreases, the population of the growing mode increases accordingly. Also with U = e−iHt

obeying U−1 = eiHt = V −1eiH
†tV = V −1U †V unitarity is generalized to the non-Hermitian case.

With V H − H†V = 0 and i∂t|R〉 = H|R〉, we obtain −i∂t〈R|V = 〈R|H†V = 〈R|V H , and can thus

identify left-eigenvectors 〈L| = 〈R|V , and can set 〈R(t)|V |R(t)〉 = 〈L(t)|R(t)〉 = 〈L(0)|e−iHteiHt|R(0)〉 =

〈L(0)|R(0)〉. Thus in the non-Hermitian case we should use the left-right norm, with this being the most

general one possible if probability is to be conserved.

PROBALITY CONSERVATION IMPLIES ANTILINEARITY NOT HERMITICITY
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4 Complex Lorentz Invariance

Is there any particular antilinear symmetry that might be preferred? If impose complex Lorentz invariance

then CPT .

Can get real eigenvalues without assuming Hermiticity.

Can get probability conservation without assuming Hermiticity.

Can get CPT theorem without assuming Hermiticity.

Then if energies come in complex conjugate pairs, can describe decays and unstable states such as in K meson

sector. In standard derivation of CPT theorem assume Hermiticity, so then no decays.

Lorentz transformations are of the form Λ = eiw
µνMµν with six angles wµν = −wνµ and six Lorentz generators

Mµν = −Mνµ that obey

[Mµν,Mρσ] = i(−ηµρMνσ + ηνρMµσ − ηµσMρν + ηνσMρµ). (12)

Under a Lorentz transformation the line element transforms as

xαηαβx
β → xαΛ̃ηαβΛxβ, (13)

(tilde denotes transpose), with Λ̃ = eiw
µνM̃µν . Given the Lorentz algebra one has eiw

µνM̃µνηαβ = ηαβe
−iwµνMµν

(i.e. Minkowski metric orthogonal), with the line element thus being invariant. While this analysis familiarly

holds for real wµν, since wµν plays no explicit role in it, the analysis equally holds if wµν is complex.

For a general spin zero Lagrangian where wµνMµν acts as wµν(xµpν−xνpν) = 2wµνxµpν, under an infinites-

imal Lorentz transformation the action I =
∫
d4xL(x) transforms as

δI = 2wµν
∫
d4xxµ∂νL(x) = 2wµν

∫
d4x∂ν[xµL(x)], (14)

to thus be a total derivative and thus be left invariant. However the change will be a total derivative even if

wµν is complex. So again we see that we have invariance under complex Lorentz transformations.

6



For spinors ψ we cannot use ψ† since we would then have to use Λ† = e−i[w
µν ]∗M†µν . So instead use Majorana

spinors in the Majorana basis of the Dirac gamma matrices, since in that basis they are self conjugate. In

Grassmann space one has line element ψ̃Cψ where C effects CγµC−1 = −γ̃µ and thus CMµνC
−1 = −M̃µν.

(In Majorana basis C = γ0.) Thus under a Lorentz transformation we have

ψ̃Cψ → ψ̃eiw
µνM̃µνCeiw

µνMµνψ = ψ̃Ce−iw
µνMµνeiw

µνMµνψ = ψ̃Cψ. (15)

So once again we see that we have invariance under complex Lorentz transforms and not just under real ones.

Thus for a general Dirac spinor set ψ = ψ1 + iψ2 with ψ1 = ψ†1, ψ2 = ψ†2. Then under charge conjugation

we obtain Ĉψ1Ĉ
−1 = ψ1, Ĉψ2Ĉ

−1 = −ψ2. Then set ψ†γ0ψ = (ψ̃1 − iψ̃2)C(ψ1 + iψ2) and afterwards apply

Lorentz transformation, to thus remain invariant under complex Lorentz transformations. In Majorana basis

of Dirac gamma matrices P̂ , T̂ , and ĈP̂ T̂ implement

P̂ψ(~x, t)P̂−1 = γ0ψ(−~x, t), T̂ψ(~x, t)T̂−1 = γ1γ2γ3ψ(~x,−t),
ĈP̂ T̂ [ψ1(x) + iψ2(x)]T̂−1P̂−1Ĉ−1 = iγ5[ψ1(−x)− iψ2(−x)]. (16)

a relation that will prove central to the discussion.

If M̂µν = M̂ †
µν and wµν is complex, then Λ† = e−i[w

µν ]∗Mµν 6= Λ̂−1 = e−iw
µνMµν , and Dirac norm 〈R|R〉 →

〈R|Λ†Λ|R〉 is not invariant under a complex Lorentz transform. Thus need some additional operator that will

convert exp(−i[wµν]∗M̂µν) into exp(−iwµνM̂µν). It would have to be antilinear in order to complex conjugate

[wµν]∗. But since it would also conjugate the i factor it would at the same time have to convert M̂µν into−M̂µν.

Because of the factor i in the Lorentz algebra where [M̂, M̂ ] = iM̂ , the operator that does this is precisely

ĈP̂ T̂ , with ĈP̂ T̂ M̂µν[ĈP̂ T̂ ]−1 = −M̂µν. Consequently 〈R|ĈP̂ T̂ |R〉 is invariant under complex Lorentz

transformations when M̂µν is Hermitian, while 〈R|V ĈP̂ T̂ |R〉 is invariant when V M̂µν = M̂ †
µνV . This then is

how one constructs matrix elements in general that are invariant under complex Lorentz transformations.

Complex Lorentz invariance is just as natural as real Lorentz invariance.
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5 Relation of CPT to Complex Lorentz Transformations

On coordinates PT implements xµ → −xµ, and thus so does CPT since the coordinates are charge conjugation even (i.e.
unaffected by a charge conjugation transformation). With a boost in the x1-direction implementing x′1 = x1 cosh ξ+ t sinh ξ,
t′ = t cosh ξ + x1 sinh ξ, with ξ = iπ we obtain

Λ0
1(iπ) : x1 → −x1, t→ −t,

Λ0
2(iπ) : x2 → −x2, t→ −t,

Λ0
3(iπ) : x3 → −x3, t→ −t,

πτ = Λ0
3(iπ)Λ0

2(iπ)Λ0
1(iπ) : xµ → −xµ. (17)

The complex πτ thus implements the linear part of a PT and thus CPT transformation on the coordinates.
With Λ0

i(iπ) implementing e−iπγ
0γi/2 = −iγ0γi in the Dirac gamma matrix space, on introducing

π̂τ̂ = Λ̂0
3(iπ)Λ̂0

2(iπ)Λ̂0
1(iπ) = iγ0γ1γ2γ3 = γ5, (18)

we obtain

π̂τ̂ψ1(x)τ̂−1π̂−1 = γ5ψ1(−x), π̂τ̂ψ2(x)τ̂−1π̂−1 = γ5ψ2(−x). (19)

Thus up to an overall complex phase, quite remarkably we recognize this transformation as acting as none other than the
linear part of a CPT transformation since ĈP̂ T̂ [ψ1(x) + iψ2(x)]T̂−1P̂−1Ĉ−1 = iγ5[ψ1(−x) − iψ2(−x)]. Thus CPT is
naturally associated with the complex Lorentz group.

With the Lagrangian density L(x) being spin zero, π̂τ̂ effects π̂τ̂L(x)τ̂−1π̂−1 = L(−x) up to a phase. We will show below
that the phase is one. Thus, with K denoting complex conjugation, when acting on a spin zero Lagrangian we can identify
ĈP̂ T̂ = Kπ̂τ̂ . On applying π̂τ̂ we obtain

ĈP̂ T̂
∫
d4xL(x)T̂−1P̂−1Ĉ−1 = Kπ̂τ̂

∫
d4xL(x)τ̂−1π̂−1K

= K
∫
d4xL(−x)K = K

∫
d4xL(x)K =

∫
d4xL∗(x). (20)

Establishing the CPT theorem is thus reduced to showing that L(x) = L∗(x).
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6 CPT Theorem Without Hermiticity

C P T CP CT PT CPT
ψ̄ψ + + + + + + +

ψ̄iγ5ψ + - - - - + +
ψ̄γ0ψ - + + - - + -
ψ̄γiψ - - - + + + -
ψ̄γ0γ5ψ + - + - + - -
ψ̄γiγ5ψ + + - + - - -

ψ̄i[γ0, γi]ψ - - + + - - +
ψ̄i[γi, γj]ψ - + - - + - +
ψ̄[γ0, γi]γ5ψ - + - - + - +
ψ̄[γi, γj]γ5ψ - - + + - - +

Table 1: C, P, and T assignments for fermion bilinears

C P T CP CT PT CPT
ψ̄ψ + + + + + + +

ψ̄iγ5ψ + - - - - + +
ψ̄ψψ̄ψ + + + + + + +

ψ̄ψψ̄iγ5ψ + - - - - + +
ψ̄iγ5ψψ̄iγ5ψ + + + + + + +
ψ̄γµψψ̄γµψ + + + + + + +
ψ̄γµψψ̄γµγ

5ψ - - + + - - +
ψ̄γµγ5ψψ̄γµγ

5ψ + + + + + + +
ψ̄i[γµ, γν ]ψψ̄i[γµ, γν ]ψ + + + + + + +
ψ̄i[γµ, γν ]ψψ̄[γµ, γν ]γ

5ψ + - - - - + +
ψ̄i[γµ, γν ]γ5ψψ̄i[γµ, γν ]γ

5ψ + + + + + + +

Table 2: C, P, and T assignments for fermion bilinears and quadrilinears that have spin zero

CPT phase alternates with spin. All spin zero quantities have even CPT . Also all are real (Mannheim 2015).

Since probability conservation requires an antilinear symmetry, we have K
∫
d4xL(x)K =

∫
d4xL∗(x) =

∫
d4xL(x). Thus

infer that all the numerical coefficients in L(x) are real, that L(x) = L∗(x), and that
∫
d4xL(x) is CPT invariant, with the

CPT theorem thus being extended to non-Hermitian Hamiltonians.
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7 Some Implications

(1) In the complex conjugate energy case time-independent transitions occur between decaying and growing states. A decay
such as K+ → π+π0 can thus occur if the Hamiltonian has an antilinear symmetry, even though it would be forbidden if the
Hamiltonian is Hermitian. Then the CPT theorem in the antilinear case ensures that its rate is equal to that of K− → π−π0.
We thus extend the CPT theorem to unstable states.

(2) In those cases in which charge conjugation is separately conserved CPT reduces to PT , even if the Hamiltonian is not
Hermitian. (Even for non-Hermitian Hamiltonians CPT plus C implies PT .) In such cases we recover the non-Hermitian
PT program of Bender and collaborators, and thus put the PT symmetry program on a quite firm theoretical foundation.

(3) Our derivation of the CPT theorem leads to L = L∗ and thus to H = H∗. In contrast, in the standard derivation of
the CPT theorem H = H† is input. Here H = H∗ is output, with it being probability conservation plus complex Lorentz
invariance that is input. Now in one of the standard derivations of the CPT theorem (see e.g. Weinberg Quantum Field
Theory I) one notes that all spin zero multilinears are Hermitian. Then a Hermiticity assumption requires all numerical
coefficients be real and the CPT theorem follows. Remarkably then, both types of derivation lead to the very same functional
form for the action, with real numerical coefficients in each case. So how can we tell them apart.

(4) So consider as an example IS =
∫
d4x[∂µφ∂

µφ−m2φ2]/2 with Hamiltonian H =
∫
d3x[φ̇2+ ~∇φ· ~∇φ+m2φ2]/2. Solutions to

the wave equation obey ω2
k = ~k2+m2, φ(~x, t) =

∑
[a(~k) exp(−iωkt+ i~k ·~x)+a†(~k) exp(+iωkt− i~k ·~x)], and the Hamiltonian is

given by H =
∑

[~k2 +m2]1/2[a†(~k)a(~k) + a(~k)a†(~k)]/2. If m2 > 0 all energies are real, and both H and φ(~x, t) are Hermitian.

However, if m2 = −n2 < 0, now ω2
k = ~k2−n2, the k < n energies come in complex conjugate pairs and neither H nor φ(~x, t)

is Hermitian. Despite this, the standard derivation of the CPT theorem would have identified IS =
∫
d4x[∂µφ∂

µφ+ n2φ2]/2
as being a Hermitian theory. But it is not, and one cannot tell by inspection. One needs to solve the theory and
get the solutions first. Nonetheless, in both the m2 > 0 and m2 < 0 cases φ(~x, t) is a CPT even field and H is CPT
invariant (since m2 is real), and that one can tell by inspection. Thus CPT symmetry is input, and H and φ(~x, t) will only
be Hermitian for certain values of parameters (reminiscent of our two-dimensional example where E± = 1± (s2 − 1)1/2).

Hermiticity never needs to be postulated, with it being output in those cases in which it is found to occur.
Probability conservation and complex Lorentz invariance entail CPT invariance not Hermiticity.

Antilinear CPT symmetry thus has primacy over Hermiticity, and it is antilinearity that should be taken
as the guiding principle for quantum theory.
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