HIGHER-ORDERS IN HEAVY QUARK PROCESSES WITHIN THE LTD APPROACH

Germán F. R. Sborlini

in collaboration with F. Driencourt-Mangin and G. Rodrigo arXiv:1608.01584 [hep-ph]

Institut de Física Corpuscular, UV-CSIC (Spain)

Aug. 4th, 2016 Chicago, USA

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016

Content

- □ Introduction
- Loop-tree duality with massive particles
 - Location of singularities
 - Real-virtual momentum mapping
 - UV counterterms and renormalization
- \square Physical example: $A^* o q \bar{q}(g)$ @ NLO
- Conclusions and perspectives

Based in:

- Catani et al, JHEP 09 (2008) 065; Buchta et al, JHEP 11 (2014) 014
- Hernandez-Pinto, GS and Rodrigo, JHEP 02 (2016) 044
- GS, Driencourt-Mangin, Hernandez-Pinto and Rodrigo, arXiv:1604.06699 [hep-ph]
- Rodrigo, Driencourt-Mangin and GS, arXiv:1608.01584 [hep-ph]

Introduction

Theoretical motivation

- Higher orders in pQCD are needed to increase theoretical accuracy
- Deal with ill-defined expressions in intermediate steps DREG!!!
 - Space-time analitically continued from d=4 to d=4-2 ε dimensions.
 - lacktriangle Singularities in four-dimensions manifest as poles in $oldsymbol{arepsilon}$
 - Extend spinor/vector algebra to d-dimensions. It is not unique, and leads to different Regularization Schemes
- Physical observables are finite since they are IR-safe
 - KLN theorem guarantees cancelation of singularities among real and virtual contributions
 - In DREG, the cancellation manifests after integration
- Idea: Achieve the cancellation before integration and without using
 DREG in intermediate expressions

Introduction

Dual representation of one-loop integrals

$$L^{(1)}(p_1,\ldots,p_N) = \int_\ell \prod_{i=1}^N G_F(q_i) = \int_\ell \prod_{i=1}^N \frac{1}{q_i^2 - m_i^2 + i0}$$
 integral
$$Dual_{\text{integral}} L^{(1)}(p_1,\ldots,p_N) = -\sum_{i=1}^N \int_\ell \tilde{\delta}(q_i) \prod_{j=1,j\neq i}^N G_D(q_i;q_j) \text{ Sum of phase-space integrals!}$$

- Dual integrals contain propagators with a modified prescription.
- LTD is equivalent to Feynman Tree Theorem (FTT) but only uses single-cuts (multiple cuts codified in the dual prescription)

Dual propagator

$$G_D(q_i, q_j) = \frac{1}{q_j^2 - m_j^2 - i0\eta(q_j - q_i)}$$

Modified prescription (η is space- or light-like)

$$\tilde{\delta}(q_i) = i2\pi \,\theta(q_{i,0}) \,\delta(q_i^2 - m_i^2)$$

On-shell condition
(loop measure -> PS measure)

Catani et al, JHEP 09 (2008) 065

Motivation and introduction

- Idea I: apply LTD directly to virtual amplitudes PS integrals
- Idea II: use dual kinematics to generate real-emission on-shell kinematics
- Idea III: write UV counter-terms and perform integrand-level subtraction. This will lead to purely 4-dimensional integrable expressions
- Reference example: scalar three-point function with masses
 - Two massive on-shell external particles; one incoming off-shell particle
 - One internal massless state (gluon, photon,...)

Location of IR singularities

Analize the dual integration region. It is obtained as the positive energy solution of the on-shell condition;

$$G_F^{-1}(q_i) = q_i^2 - m_i^2 + i0 = 0$$
 $q_{i,0}^{(\pm)} = \pm \sqrt{\mathbf{q}_i^2 + m_i^2 - i0}$

$$q_{i,0}^{(\pm)} = \pm \sqrt{\mathbf{q}_i^2 + m_i^2 - i0}$$

Massive case: on-shell hyperboloids

- Forward (backward) on-shell hyperboloids associated with positive (negative) energy mode.
- Degenerate to light-cones for massless propagators.
- Dual integrands become singular at intersections (two or more onshell propagators)

Massless case: light-cones

Location of IR singularities

 Analize the dual integration region. It is obtained as the positive energy solution of the on-shell condition;

$$G_F^{-1}(q_i) = q_i^2 - m_i^2 + i0 = 0$$

$$G_F^{-1}(q_i) = q_i^2 - m_i^2 + i0 = 0$$
 $q_{i,0}^{(\pm)} = \pm \sqrt{\mathbf{q}_i^2 + m_i^2 - i0}$

Massive case: on-shell hyperboloids

- Forward (backward) on-shell hyperboloids associated with positive (negative) energy mode.
- Degenerate to light-cones for massless propagators.
- Dual integrands become singular at intersections (two or more onshell propagators)
- **Quasi-collinear** configurations lead to $Log(m^2)$, which is singular in the massless limit

Massless case: light-cones

Real-virtual momentum mapping

NLO computations require to combine one-loop and real-emission contributions
Different kinematics!!!!

- LTD express virtual amplitudes as dual integrals. They depend on LO kinematics and the loop three-momentum \vec{l} (integration variable)
- Real contribution includes one additional physical particle in final state.
 Split the phase-space to isolate IR singularities (only one in each region)

$$\mathcal{R}_i = \{y'_{ir} < \min(y'_{jk})\}, \qquad \sum \mathcal{R}_i = 1$$

□ IDEA: Use the loop 3-momentum and N-particle kinematics to generate N+1-particle kinematics Achieve a local matching of singular regions among real and dual contributions (exploiting the partition)

Real-virtual momentum mapping

- Real-virtual momentum mapping with massive particles
 - Consider 1 the emitter, r the radiated particle and 2 the spectator
 - Apply the PS partition and restrict to the only region where 1//r is allowed (i.e. $\mathcal{R}_1 = \{y'_{1r} < \min y'_{ki}\}$)
 - Propose the following mapping:

$$p_r^{\prime \mu} = q_1^{\mu}$$

$$p_1^{\prime \mu} = (1 - \alpha_1) \, \hat{p}_1^{\mu} + (1 - \gamma_1) \, \hat{p}_2^{\mu} - q_1^{\mu}$$

$$p_2^{\prime \mu} = \alpha_1 \, \hat{p}_1^{\mu} + \gamma_1 \, \hat{p}_2^{\mu}$$

Impose on-shell conditions to determine mapping parameters

Express the loop three-momentum with the same parameterization used for describing the dual contributions!

Repeat in each region of the partition...

10 Example: massive scalar three-point function (DREG vs LTD)

- We combine the dual contributions with the real terms (after applying the proper mapping) to get the total decay rate in the scalar toy-model.
 - The result agrees *perfectly* with standard DREG.
 - Massless limit is smoothly approached due to proper treatment of quasi-collinear configurations in the RV mapping

Rodrigo et al, arXiv:1608.01584 [hep-ph]

UV counterterms and renormalization

- LTD can also deal with UV singularities by building local versions of the usual UV counterterms.
- □ 1: Expand internal propagators around the "UV propagator"

$$\frac{1}{q_i^2 - m_i^2 + \imath 0} \ = \ \frac{1}{q_{\text{UV}}^2 - \mu_{\text{UV}}^2 + \imath 0} \\ \times \ \left[1 - \frac{2q_{\text{UV}} \cdot k_{i,\text{UV}} + k_{i,\text{UV}}^2 - m_i^2 + \mu_{\text{UV}}^2}{q_{\text{UV}}^2 - \mu_{\text{UV}}^2 + \imath 0} + \frac{(2q_{\text{UV}} \cdot k_{i,\text{UV}})^2}{(q_{\text{UV}}^2 - \mu_{\text{UV}}^2 + \imath 0)^2} \right] + \mathcal{O}\left((q_{\text{UV}}^2)^{-5/2} \right)$$

2: Apply LTD to get the dual representation for the expanded UV expression, and subtract it from the dual+real combined integrand.

$$I_{\text{UV}}^{\text{cnt}} = \int_{\ell} \frac{\delta(q_{\text{UV}})}{2(q_{\text{UV},0}^{(+)})^2} q_{\text{UV},0}^{(+)} = \sqrt{\mathbf{q}_{\text{UV}}^2 + \mu_{\text{UV}}^2 - i0}$$

LTD extended to deal with multiple poles
(use residue formula to obtain the dual
representation)

Bierenbaum et al. JHEP 03 (2013) 025

UV counterterms and renormalization

- Requires unintegrated wave-function, mass and vertex renormalization constants
- Self-energy corrections with on-shell renormalization conditions

$$\Sigma_R(\not p_1 = M) = 0 \qquad \frac{d\Sigma_R(\not p_1)}{d\not p_1}\bigg|_{\not p_1 = M} = 0$$

Wave function renormalization constant, both IR and UV poles

$$\Delta Z_2(p_1) = -g_S^2 C_F \int_{\ell} G_F(q_1) G_F(q_3) \left((d-2) \frac{q_1 \cdot p_2}{p_1 \cdot p_2} + 4M^2 \left(1 - \frac{q_1 \cdot p_2}{p_1 \cdot p_2} \right) G_F(q_3) \right)$$

- Remove UV poles by expanding around the UV-propagator (same for the vertex counterterm)
- Integrated form of local counterterms agrees with standard UV counterterms

- Total decay rate for Higgs into a pair of massive quarks:
 - Agreement with the standard DREG result
 - Smoothly achieves the massless limit
 - Local version of UV counterterms successfully reproduces the expected behaviour
 - Efficient numerical implementation

14

- Total decay rate for a vector particle into a pair of massive quarks:
 - Agreement with the standard DREG result
 - Smoothly achieves the massless limit
 - Efficient numerical implementation

- The total decay-rate can be expressed using purely fourdimensional integrands
- We recover the total NLO correction, avoiding to deal with DREG
- Main advantages:
 - ✓ Direct **numerical** implementation (integrable functions for $\varepsilon = 0$)
 - No need of tensor reduction (avoids the presence of Gram determinants, which could introduce numerical instabilities)
 - ✓ Smooth transition to the massless limit (due to the efficient treatment of quasi-collinear configurations)

Conclusions and perspectives

- ✓ Physical interpretation of IR/UV singularities in loop integrals (intersections of on-shell hyperboloids)
- Integrand-level renormalization (fully local cancellation of singularities)
- Combined virtual-real terms are integrable in 4D
- Smooth transition to the massless limit
- First (realistic) physical implementation
- Perspectives:
 - Apply the technique to compute other physical observables (including heavy particles and multi-leg processes)
 - Extend the procedure to higher orders!!!

Indinksk