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¨  Higher orders in pQCD are needed to increase theoretical accuracy 

¨  Deal with ill-defined expressions in intermediate steps      DREG!!! 
¤  Space-time analitically continued from d=4 to d=4-2ε dimensions. 

¤  Singularities in four-dimensions manifest as poles in ε 

¤  Extend spinor/vector algebra to d-dimensions. It is not unique, and leads to 
different Regularization Schemes 

¨  Physical observables are finite since they are IR-safe 
¤  KLN theorem guarantees cancelation of singularities among real and virtual 

contributions  
¤  In DREG, the cancellation manifests after integration  

¨  Idea: Achieve the cancellation before integration and without using 
DREG in intermediate expressions 

Theoretical motivation 

Catani et al, JHEP 09 (2008) 065 
Use the Loop-Tree 
Duality theorem 
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4 Dual representation of one-loop integrals 

Loop  
Feynman 
integral 

Dual  
integral 

Sum of phase-
space integrals! 

Catani et al, JHEP 09 (2008) 065 
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Dual propagator 

¨  Dual integrals contain propagators with a modified prescription. 

¨  LTD is equivalent to Feynman Tree Theorem (FTT) but only uses single-
cuts (multiple cuts codified in the dual prescription) 

On-shell condition  
(loop measure -> PS measure) Modified prescription 

 (η is space- or light-like) 



¨  Idea I: apply LTD directly to virtual amplitudes         PS integrals 

¨  Idea II: use dual kinematics to generate real-emission on-shell 
kinematics 

¨  Idea III: write UV counter-terms and perform integrand-level 
subtraction. This will lead to purely 4-dimensional integrable 
expressions  

¨  Reference example: scalar three-point function with masses 
¤  Two massive on-shell external particles; one incoming off-shell 

particle 
¤  One internal massless state (gluon, photon,…) 
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5 Motivation and introduction 
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6 Location of IR singularities 

¨  Analize the dual integration region. It is obtained as the positive energy 
solution of the on-shell condition; 

§  Forward (backward) on-shell 
hyperboloids associated with 
positive (negative) energy 
mode. 

§  Degenerate to light-cones for 
massless propagators. 

§  Dual integrands become singular 
at intersections (two or more on-
shell propagators) 

Massless case: 
light-cones 

Massive case: on-shell 
hyperboloids 
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7 Location of IR singularities 

¨  Analize the dual integration region. It is obtained as the positive energy 
solution of the on-shell condition; 

§  Forward (backward) on-shell 
hyperboloids associated with 
positive (negative) energy 
mode. 

§  Degenerate to light-cones for 
massless propagators. 

§  Dual integrands become singular 
at intersections (two or more on-
shell propagators) 

§  Quasi-collinear configurations 
lead to Log(m2), which is 
singular in the massless limit 

Massless case: 
light-cones 

Massive case: on-shell 
hyperboloids 
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8 Real-virtual momentum mapping 

Rodrigo et al, JHEP02(2016)044; arXiv:1604.06699, 1608.01584 [hep-ph]  

¨  NLO computations require to combine one-loop and real-emission 
contributions   Different kinematics!!!! 

¨  LTD express virtual amplitudes as dual integrals. They depend on LO 
kinematics and the loop three-momentum         (integration variable) 

¨  Real contribution includes one additional physical particle in final state. 
Split the phase-space to isolate IR singularities (only one in each region) 

¨  IDEA: Use the loop 3-momentum and N-particle kinematics to generate 
N+1-particle kinematics         Achieve a local matching of singular 
regions among real and dual contributions (exploiting the partition) 

 

VIRTUAL  
(N OS particles + 
loop momentum) 

REAL 
(N+1 OS particles) 
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Rodrigo et al, JHEP02(2016)044; arXiv:1604.06699, 1608.01584 [hep-ph]  

¨  Real-virtual momentum mapping with massive particles 
¤  Consider 1 the emitter, r the radiated particle and 2 the spectator 

¤  Apply the PS partition and restrict to the only region where 1//r is 
allowed (i.e.                                 ) 

¤  Propose the following mapping: 

¤  Express the loop three-momentum with the same parameterization used for 
describing the dual contributions! 

 

R1 = {y01r < min y0kj}

Repeat in each region of the partition… 

Real-virtual momentum mapping 

Impose on-shell 
conditions to determine 

mapping parameters 



¨  We combine the dual contributions with the real terms (after applying the 
proper mapping) to get the total decay rate in the scalar toy-model. 
¤  The result agrees perfectly with                                                         

standard DREG. 
¤  Massless limit is smoothly 

approached due to proper  
treatment of quasi-collinear  

configurations in the RV mapping 

10 Example: massive scalar three-point function (DREG vs LTD) 

LTD with massive particles 

LTD 

m=0
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Rodrigo et al, arXiv:1608.01584 [hep-ph]   



¨  LTD can also deal with UV singularities by building local versions of the 
usual UV counterterms. 

¨  1: Expand internal propagators around the “UV propagator” 

¨  2: Apply LTD to get the dual representation for the expanded UV 
expression, and subtract it from the dual+real combined integrand. 

11 UV counterterms and renormalization 

LTD with massive particles 

LTD 
Becker, Reuschle, Weinzierl, JHEP 12 (2010) 013 

Bierenbaum et al. JHEP 03 (2013) 025 

LTD extended to deal with multiple poles  
(use residue formula to obtain the dual 

representation) 



¨  Requires unintegrated wave-function, mass and vertex renormalization 
constants 

¨  Self-energy corrections with on-shell renormalization conditions  

¨  Wave function renormalization constant, both IR and UV poles  

¨  Remove UV poles by expanding around the UV-propagator (same for the vertex 
counterterm) 

¨  Integrated form of local counterterms agrees with standard UV counterterms    

12 UV counterterms and renormalization 

LTD with massive particles 

Rodrigo et al, JHEP02(2016)044; arXiv:1604.06699, 1608.01584 [hep-ph]  



13 Results and comparison with DREG 

Physical example:                  @NLO 

LTD 

μUV=2

μUV=1/2

μUV=1

H→ q q

Analytical (DREG)

4D unsubtracted (LTD)
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Rodrigo et al, arXiv:1608.01584 [hep-ph]   

¨  Total decay rate for Higgs 
into a pair of massive 
quarks: 
¤  Agreement with the 

standard DREG result 
¤  Smoothly achieves the 

massless limit 
¤  Local version of UV 

counterterms succesfully 
reproduces the 
expected behaviour 

¤  Efficient numerical 
implementation 

A⇤ ! qq̄(g)
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LTD 

Rodrigo et al, arXiv:1608.01584 [hep-ph]   

Analytical (DREG)
4D unsubtracted (LTD)

γ→q q
Z→u u

Z→d d
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Results and comparison with DREG 

¨  Total decay rate for a 
vector particle into a pair of 
massive quarks: 
¤  Agreement with the 

standard DREG result 
¤  Smoothly achieves the 

massless limit 
¤  Efficient numerical 

implementation 

Physical example:                  @NLO A⇤ ! qq̄(g)
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¨  The total decay-rate can be expressed using purely four-
dimensional integrands 

¨  We recover the total NLO correction, avoiding to deal with DREG 

¨  Main advantages: 
ü  Direct numerical implementation (integrable functions for ε=0) 
ü  No need of tensor reduction (avoids the presence of Gram 

determinants, which could introduce numerical instabilities) 
ü  Smooth transition to the massless limit (due to the efficient 

treatment of quasi-collinear configurations) 

Final remarks 

Rodrigo et al, arXiv:1608.01584 [hep-ph]   

Physical example:                  @NLO A⇤ ! qq̄(g)
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ü  Physical interpretation of IR/UV singularities in loop integrals 
(intersections of on-shell hyperboloids) 

ü  Integrand-level renormalization (fully local cancellation of 
singularities) 

ü  Combined virtual-real terms are integrable in 4D 

ü  Smooth transition to the massless limit 

ü  First (realistic) physical implementation 

§  Perspectives: 
§  Apply the technique to compute other physical observables 

(including heavy particles and multi-leg processes) 
§  Extend the procedure to higher orders!!! 

 



Thanks!!! 


