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Introduction
5 | Theorefical mofivation

0 Higher orders in pQCD are needed to increase theoretical accuracy

0 Deal with ill-defined expressions in intermediate steps |:> DREG!!
O Space-time analitically continued from d=4 to d=4-2 & dimensions.
O Singularities in four-dimensions manifest as poles in &

O Extend spinor/vector algebra to d-dimensions. It is not unique, and leads to
different Regularization Schemes

0 Physical observables are finite since they are IR-safe

O KLN theorem guarantees cancelation of singularities among real and virtual
contributions

o In DREG, the cancellation manifests after integration

0 ldea: Achieve the cancellation before integration and without using
DREG in intermediate expressions

— Use i,he Loop-Tree Catani et al, JHEP 09 (2008) 065
Duality theorem



Introduction
"+ | Dual representation of one-loop infegrals

N
Loop (1) / / 1
L yee ey Gr(q) = :
Feynman (P2 PN) H r(a) , 71;[1 q? — m? + 10

integral

!)ual L(l)(pl,...,pz\r 2/5 ¢) H G (g ;) Sum of phase-

integral space integrals!
J=1,5#1

0 Dual integrals contain propagators with a modified prescription.

o LTD is equivalent to Feynman Tree Theorem (FTT) but only uses single-
cuts (multiple cuts codified in the dual prescription)

Dual propagator S
Golgi ;) = 1 0(qi) = 127 0(qs,0) 0(q; — m;)
p (4, 4; ¢z —m2 = i0n(g; — a)

On-shell condition
Modified prescription (loop measure -> PS measure)

(717 is space- or light-like)

Catani et al, JHEP 09 (2008) 065



LTD with massive particles

~ 5 | Motivation and introduction

0 Idea I: apply LTD directly to virtual amplitudes =) PS integrals

0 ldea ll: use dual kinematics to generate real-emission on-shell
kinematics

0 ldea lll: write UV counter-terms and perform integrand-level
subtraction. This will lead to purely 4-dimensional integrable
expressions

O Reference example: scalar three-point function with masses

O Two massive on-shell external particles; one incoming off-shell
particle

O One internal massless state (gluon, photon,...)




LTD with massive particles
. Jiocation of R singularifies

0 Analize the dual integration region. It is obtained as the positive energy
solution of the on-shell condition;

+ :
Gil(g) =g —mi+i0=0 E=2 d = J_r\/qf +m? — 0

" Forward (backward) on-shell
hyperboloids associated with
positive (negative) energy
mode.

= Degenerate to light-cones for
massless propagators.

®  Dual integrands become singular

threshold\\‘
at intersections (two or more on-
shell propagators) Y
¢z
Massive case: on-shell Massless case:
hyperboloids light-cones




LTD with massive particles

0 Analize the dual integration region. It is obtained as the positive energy
solution of the on-shell condition;

+ :
Gil(g) =g —mi+i0=0 E=2 d = J_r\/qf +m? — 0

Massive case: on-shell
hyperboloids

Forward (backward) on-shell
hyperboloids associated with
positive (negative) energy
mode.

Degenerate to light-cones for
massless propagators.

Dual integrands become singular
at intersections (two or more on-
shell propagators)
Quasi-collinear configurations
lead to Log(m2), which is
singular in the massless limit

threshold

$z

Massless case:
light-cones




LTD with massive particles

~ 8 [Real-virtual momentum mappi

0 NLO computations require to combine one-loop and real-emission
contributions ) Different kinematics!l!

o Py
i /
).
s [ + P j28
P2 /
e P2
p3s—p1 + P2 = p3—pi + Py +p,
+ 7

0 LTD express virtual amplitudes as dual integrals. They depend on LO
kinematics and the loop three-momentum [  (integration variable)

0 Real contribution includes one additional physical particle in final state.
Split the phase-space to isolate IR singularities (only one in each region)

Ri = {y; <min(yj)}, ZRZ =1

0 IDEA: Use the loop 3-momentum and N-particle kinematics to generate
N+1-particle kinematics ‘ Achieve a local matching of singular
regions among real and dual contributions (exploiting the partition)

Rodrigo et al, JHEP02(2016)044; arXiv:1604.06699, 1608.01584 [hep-ph]



LTD with massive particles

~ 9 [Real-virtual momentum mappi

0 Real-virtual momentum mapping with massive particles
O Consider 1 the emitter, r the radiated particle and 2 the spectator

O Apply the PS partition and restrict to the only region where 1//r is
allowed (i.e. R1 = {y1,, < min y,’cj})

O Propose the following mapping:

Pt =dy
pi' =1 —a)pf + (1 —m)ps —qf
70

L /\/l, A/j,
Py = Q1 Py + V1 P5

O Express the loop three-momentum with the same parameterization used for
describing the dual contributions!

Rodrigo et al, JHEP02(2016)044; arXiv:1604.06699, 1608.01584 [hep-ph]



LTD with massive particles

10 | Example: massive scalar three-point function (DREG vs LTD)

0 We combine the dual contributions with the real terms (after applying the
proper mapping) to get the total decay rate in the scalar toy-model.

O The result agrees perfectly with
standard DREG.

O Massless limit is smoothly
approached due to proper

treatment of quasi-collinear

configurations in the RV mapping

I
I
I
1
[
I
I

8

=
g
=
~ 4r
=

=
o
©

— Analytical (DREG)

e 4D unsubtracted (LTD)

Rodrigo et al, arXiv:1608.01584 [hep-ph]



LTD with massive particles
1 JUV counterterms and renormalization —————

O LTD can also deal with UV singularities by building local versions of the
usual UV counterterms.

0 1: Expand internal propagators around the “UV propagator”

1 o 1 Becker, Reuschle, Weinzierl, JHEP 12 (2010) 013
g —m? +10 Gy — py + 10
2quv - kiuv + ki yy — mi + piy (2quv - kiuv)? _
< Ji- ’ ¥ W L0 (@)

qty — 1y + 10 (atv — 1y +10)2

0 2: Apply LTD to get the dual representation for the expanded UV
expression, and subtract it from the dual+real combined integrand.

[{}r{} — / 6(QUV) LTD extended to deal with multiple poles
9 (q(+) ) (use residue formula to obtain the dual
UVvV,0

representation)

(+) :
quv o = /Aoy + Boy — 0 Bierenbaum et ol. JHEP 03 (2013) 025



LTD with massive particles
2 JUV counterterms and renormalization ————

O

Requires unintegrated wave-function, mass and vertex renormalization
constants

Self-energy corrections with on-shell renormalization conditions

dYr(p1)
Y =M)=0 = =0
R(ﬁl ) dﬁl h=M
Wave function renormalization constant, both IR and UV poles
AZip) = ~Cr [Grla)Grta) (-2 2 +aar? (1= L2 Gy
¢ P1 - P2 P1 - P2

Remove UV poles by expanding around the UV-propagator (same for the vertex
counterterm)

Integrated form of local counterterms agrees with standard UV counterterms

Rodrigo et al, JHEP02(2016)044; arXiv:1604.06699, 1608.01584 [hep-ph]



Physical example: A — ¢q(g) @NLO

13 | Results and comparison with DREG

06 0 Total decay rate for Higgs
— Analytical (DREG) into a pair of massive
0.5] quarks:

® 4D unsubtracted (LTD) O Agreement with the

standard DREG result

0.4
' O Smoothly achieves the

massless limit

r(M,r0)

. O Local version of UV

_ counterterms succesfully
0.2} reproduces the
expected behaviour

Efficient numerical

01 - [,luv=1/2 H_)qﬁ

L \ \ \ ] , , , | , , , ] , , \ | ] implemenTCIﬁOh
0.0 0.2 0.4 0.6 0.8

Rodrigo et al, arXiv:1608.01584 [hep-ph]



Physical example: A — ¢q(g) @NLO

14 | Results and comparison with DREG

0 Total decay rate for a

061 vector particle into a pair of
E massive quarks:
O Agreement with the
-0.8

standard DREG result

O Smoothly achieves the
massless limit

O Efficient numerical
implementation

— Analytical (DREG)

—1.4_— ® 4D unsubtracted (LTD) |

0.0 0.2 0.4 0.6 0.8

Rodrigo et al, arXiv:1608.01584 [hep-ph]



Physical example: A — ¢q(g) @NLO
15 [ Final remarks

0 The total decay-rate can be expressed using purely four-
dimensional integrands

O We recover the total NLO correction, avoiding to deal with DREG

0 Main advantages:
v Direct numerical implementation (integrable functions for € =0)

v No need of tensor reduction (avoids the presence of Gram
determinants, which could introduce numerical instabilities)

v Smooth transition to the massless limit (due to the efficient
treatment of quasi-collinear configurations)

Rodrigo et al, arXiv:1608.01584 [hep-ph]



Conclusions and perspectives
BT

v

Physical interpretation of IR/UV singularities in loop integrals
(intersections of on-shell hyperboloids)

Integrand-level renormalization (fully local cancellation of
singularities)

Combined virtual-real terms are integrable in 4D
Smooth transition to the massless limit

First (realistic) physical implementation

Perspectives:

= Apply the technique to compute other physical observables
(including heavy particles and multi-leg processes)

= Extend the procedure to higher orders!!!
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