

Forward Backward Asymmetry for Λ, Ξ and Ω baryons

Brad Abbott
University of Oklahoma
For the D0 Collaboration

D0 Detector

Tracking & Muon System

- Scintillator counters and drift tubes
- Thick calorimeter and iron toroids

Excellent muon triggering and ID

- Silicon Microstrip Tracker
 Excellent vertex resolution
- Central Fiber Tracker

Good mass resolution

Excellent for B physics with muons

Forward-backward asymmetries of Λ , $\bar{\Lambda}$ at $\sqrt{s}=1.96$ TeV

The DØ detector is well suited to measure forward-backward asymmetries A_{FR} :

- Initial state is pp (CP symmetric)
- The solenoid and toroid magnetic fields are reversed periodically (canceling many important systematics)

For many measurements, no other experiment has comparable sensitivity

Phys. Rev. Lett. 115, 161601 (2015) Phys. Rev. D 90, 111102(R) (2014) Phys. Rev. Lett. 112, 111804 (2014) Phys. Rev. D 89, 012002 (2014)

$$A_{FB} \equiv \frac{N_F - N_B}{N_F + N_B}$$

Directions reversed for antiparticles

Forward-backward asymmetry of $(\Lambda, \bar{\Lambda})$

Illustrates common method used in all of these analyses

"Forward":

Forward Λ have longitudinal momentum in the p direction Forward $\overline{\Lambda}$ have longitudinal momentum in the \overline{p} direction

• Forward-backward asymmetry in a bin of |y|: $A_{FB} \equiv \frac{N_F - N_B}{N_F + N_B}$

of reconstructed Λ plus $\overline{\Lambda}$ or $\rm K_S$ with $\rm p_T > 2.0~GeV$ in each data set

Data set	Signal
----------	--------

Control channel

Data set	Number of events
(i) $p\bar{p} \to \Lambda(\bar{\Lambda})X$	5.85×10^{5}
(ii) $p\bar{p} \to J/\psi \Lambda(\bar{\Lambda}) X$	2.50×10^{5}
(iii) $p\bar{p} \to \mu^{\pm} \Lambda(\bar{\Lambda}) X$	1.15×10^7
$(i) p\bar{p} \to K_S X$	2.33×10^{6}
(ii) $p\bar{p} \to J/\psi K_S X$	6.55×10^{5}
(iii) $p\bar{p} \to \mu^{\pm} K_S X$	5.34×10^7

Forward-backward asymmetry of (Λ, Λ)

• Count Λ and Λ candidates in a signal region and subtract background determined from two sidebands.

Weighting data by luminosity and magnet polarities cancels detector

geometric effects.

The double difference*

$$A'_{FB} = \frac{N_F(\Lambda) - N_B(\Lambda) + N_F(\bar{\Lambda}) - N_B(\bar{\Lambda})}{N_F(\Lambda) + N_B(\Lambda) + N_F(\bar{\Lambda}) + N_B(\bar{\Lambda})}$$

5

cancels 1 order contributions of two detector effects:

 $A_{\Lambda\bar{\Lambda}}$: relative difference of efficiencies for Λ and Λ and

 A_{NS} : relative difference of efficiencies of the north and south sections of the DØ detector (the \overline{p} beam propagates north).

Forward-backward asymmetry $\Lambda, \overline{\Lambda}$

 $A_{FB}=0$ for $p\bar{p} \to K_s X$, because $K_s \to \pi^+\pi^-$ does not distinguish its parent K^0 or K^0 Used to verify no additional corrections from north-south asymmetries

P_T>2 GeV

Asymmetry A_{FB} $p\bar{p} \rightarrow \Lambda(\bar{\Lambda}) X$ and control sample with K_s

Forward-backward asymmetry $\Lambda, \bar{\Lambda}$

Comparing $\overline{\Lambda}/\Lambda$ production ratio $(1-A_{FB})/(1+A_{FB})$ to a wide range of proton scattering experiments

Production ratio is an approximately universal function of rapidity loss and does not depend significantly on \sqrt{s} , or target p, \bar{p} , Be or Pb

Forward-backward asymmetry Λ_b , Λ_b

Results supports view that bottom quark produced in the scattering can coalesce with a ud diquark remnant of the beam particle to produce a lambda

"String drag" effect proposed by J. Rosner

A_{FB} for Ξ^{T} and Ω^{t}

If hypothesis correct, expect $A_{FB}>0$ for Λ , Λ_c^{\pm} and Λ_b^{\pm} and $A_{FB}\sim0$ for $B, \Xi, \pm 1$ and Ω^{\pm} since these particles do not share a diquark with the proton

$$A_{FB}(B^{\pm}) = [-0.24 \pm 0.41(stat) \pm 0.19 (syst)]\%$$
 PRL 114, 051803 (2015)

A_{FB} Summary

Results consistent with hypothesis that strange or bottom quark produced in scattering can coalesce with a ud diquark remnant of the beam to produce a Λ

For particles that do not share a diquark with the proton A_{FB} consistent with 0 for B, Ξ and Ω

