

Gauge Coupling Unification in Radiative Neutrino Mass Models

Stella Riad,

KTH Royal Institute of Technology

ICHEP, Chicago, August 5, 2016

Outline

- Motivation
- RG running in radiative neutrino mass models
 - 1. Minimal UV completion models with d=7
 - 2. Models with DM
 - 3. Models with adjoint representation of SU(3)
- Summary and conclusions

Motivation

Address two of the problems with the SM:

- Neutrino mass
- Grand unification

Bonus: dark matter

Idea: RG running in radiative neutrino mass models. Can there be unification?

Choice of models

- "Minimal" extensions to the seesaw mechanism
- SM + additional representations
- SM gauge group

Three classes of models:

- I. Minimal UV completions of dimension-7 operators + DM
- II. Models with dark matter
- III. Models with particles in the adjoint representations + DM of SU(3)

Assumptions:

- New particle masses: 1 TeV
- Only gauge coupling running _____ Error margin on unification
- Only top yukawa
- Non-perturbative models

Running in radiative models

$$\frac{\mathrm{d}g_l}{\mathrm{d}t} = \beta_l(g) = b_l \frac{g_l^3}{16\pi^2} + \sum_k \left(b_{lk} \frac{g_k^2 g_l^3}{(4\pi)^4} + \frac{g_l^3}{(4\pi)^4} Tr(C_k^u Y_u^{\dagger} Y_u + C_k^d Y_d^{\dagger} Y_d + C_k^e Y_e^{\dagger} Y_e) \right)$$
[Machacek, Vaughn, 1983]

Determine contribution to gauge coupling running and solve RGE analytically (one-loop) and numerically using PyR@TE (two-loop) [Lyonnet, Schienbein, Staub, Wingerter, 2014]

Model categories:

- 1. Those unifying
- 2. Those which doesn't unify but also doesn't diverge
- 3. Those which doesn't unify and contain a Landau pole

I. Minimal UV completions of d=7 operators

[Cai, Clarke, Schmidt, Volkas, 2015]

- 15 models with d=7 operators
 - △L = 2
 - Three topologies
- Two new particles. Two scalars or one scalar + one fermion
- We assume 1 to 6 generations of each new particle.

Models SI-J

Scalar	Scalar	Operator		/	<i>a</i>	
$(1, 2, \frac{1}{2})$	(1,1,1)	$\mathcal{O}_{2,3,4}$ [28]	<u>}-</u>	•	$\mathcal{O}_2 = LLLar{e}H,$	
$(3,2,\overline{6})$ $(3,2,\overline{6})$	$(3, 1, -\frac{1}{3})$ $(3, 3, -\frac{1}{3})$	${\cal O}_{3,8} \; [{f 38}, {f 44}] \ {\cal O}_3$			$\mathcal{O}_4 = LLQ^{\dagger} \bar{u}^{\dagger} H,$	$\mathcal{O}_8 = L ar{d} ar{e}^\dagger ar{u}^\dagger H,$

I. Minimal UV completions of d=7 operators

Analytical study

$$n_{1} = \frac{2\pi}{L} \frac{B_{23}^{2} \alpha_{1,\text{SM}}^{-1}(\Lambda) + B_{31}^{2} \alpha_{2,\text{SM}}^{-1}(\Lambda) + B_{12}^{2} \alpha_{3,\text{SM}}^{-1}(\Lambda)}{B_{23}^{1} B_{31}^{2} - B_{23}^{2} B_{31}^{1}} ,$$

$$n_{2} = \frac{2\pi}{L} \frac{B_{23}^{1} \alpha_{1,\text{SM}}^{-1}(\Lambda) + B_{31}^{1} \alpha_{2,\text{SM}}^{-1}(\Lambda) + B_{12}^{1} \alpha_{3,\text{SM}}^{-1}(\Lambda)}{B_{23}^{2} B_{31}^{1} - B_{23}^{1} B_{31}^{2}} .$$

$$B_{kl}^{i} = b_{k}^{i} - b_{l}^{i} , \quad L = \ln\left(\frac{\Lambda}{\Lambda_{\text{NP}}}\right)$$

- Two new particles in $1 \le n_1 \le 6$ and $1 \le n_2 \le 6$ generations
- Models unify if range in Λ overlap

→ S1-2, S2-4, S2-6 and S2-11.

I. Minimal UV completions of d=7 operators

Model	P1	P2	$\Lambda~({\rm GeV})$	$\alpha^{-1}(\Lambda)$	$\frac{\Delta \log_{10}(\Lambda)}{\log_{10}(\Lambda)} \ (\%)$	$\frac{\Delta \alpha^{-1}}{\alpha^{-1}}$ (%)
S1-2	$3(3,2,\frac{1}{6})_S$	$(3, 1, -\frac{1}{3})_S$	$2.4\cdot 10^{15}$	37.5	1.0	0.52
S1-2	$4(3,2,\frac{1}{6})_S$	$4(3,1,-\frac{1}{3})_S$	$1.8\cdot 10^{16}$	35.1	1.6	0.80
S2-4	$(3, 1, \frac{2}{3})_F$	$5(3,2,\frac{1}{6})_S$	$4.3\cdot 10^{15}$	32.3	1.8	0.87
S2-11	$(1, 2, -\frac{1}{2})_F$	$(3, 2, \frac{1}{6})_S$	$1.2\cdot 10^{14}$	38.4	1.2	0.61

Adding dark matter

[Goodman, Witten 1985], [Cirelli, Fornengo, Strumia, 2006], [Cirelli, Strumia 2009]

Add 1 to 6 generations of DM to "basic model"

Scalar	Fermion	Scalar
$(1,3,0)_S$	$(1, 3, 0)_F$	$(1, 2, \frac{1}{2})_S$
$(1, 5, 0)_S$	$(1, 5, 0)_F$	$(1, 4, \frac{1}{2})_S$
$(1, 7, 0)_S$		

- Lower unification scale
- Gauge coupling same ball park

Model	P1	P2	DM	$\Lambda~({\rm GeV})$	$\alpha^{-1}(\Lambda)$	$\frac{\Delta \log_{10}(\Lambda)}{\log_{10}(\Lambda)} \ (\%)$	$rac{\Delta lpha^{-1}}{lpha^{-1}}$ (%)
S2-9	$(3, 1, -\frac{1}{3})_F$	$(1, 1, 1)_S$				0.54	0.28

II. Models with dark matter [Restrepo, Zapata, Yaguna, 2013]

			Model	m	P1	P2	P3	$\mathbf{P4}$	$\Lambda~({\rm GeV})$	$\alpha^{-1}(\Lambda)$
H^0	Τ1-1-Χ φ	H^0	T1-1-D	1 -1	$(1,2,\frac{1}{2})_S$ $(1,2,-\frac{1}{2})_S$	$(1,1,0)_S$ $(1,1,-1)_S$	$(1,2,\frac{1}{2})_F$ $(1,2,-\frac{1}{2})_F$	$(1,3,1)_S$ $(1,3,0)_S$	$\begin{array}{c} 1.3 \cdot 10^{13} \\ 3.1 \cdot 10^{13} \end{array}$	38.4 38.2
+		┯╼╼╼ ╼ ╼╼╼ ╷ ╷	T1-2-A	0	$(1,1,0)_F$	$(1, 2, \frac{1}{2})_S$	$(1, 1, 0)_S$	$(1,2,\frac{1}{2})_F$	$5.3\cdot 10^{13}$	39.4
ϕ	7	ϕ'	T1-2-B	$0 \\ -2$		$(1,2,rac{1}{2})_S$ $(1,2,-rac{1}{2})_S$	$(1,3,0)_S$ $(1,3,-1)_S$	$(1,2,\frac{1}{2})_F$ $(1,2,-\frac{1}{2})_F$	$\begin{array}{c} 4.6 \cdot 10^{13} \\ 3.2 \cdot 10^{12} \end{array}$	$38.4 \\ 35.9$
			T1-3-A	0	$(1,1,0)_F$	$(1,2,\frac{1}{2})_F$	$(1, 1, 0)_S$	$(1,2,-\tfrac{1}{2})_F$	$2.8\cdot 10^{13}$	37.7
ν	ψ	ν	Т3-А	$0 \\ -2$	$(1, 1, 0)_S$ $(1, 1, -1)_S$	$(1,3,1)_S$ $(1,3,0)_S$	$(1,2,\frac{1}{2})_F$ $(1,2,-\frac{1}{2})_F$	-	$\frac{1.6 \cdot 10^{13}}{4.0 \cdot 10^{13}}$	37.3 38.7
			T1-3-A	0	$(1,1,0)_F$	$(1,2,\frac{1}{2})_F$	$2 \ (1,1,0)_S$	-	$6.9\cdot10^{13}$	39.8
			T1-3-B	0	$(1,1,0)_F$	$(1,2,\frac{1}{2})_F$	$2 \ (1,3,0)_S$	-	$5.7\cdot 10^{13}$	38.9

- One-loop realization of Weinberg operator
- 4 topologies
- 2-4 new particles
- Color neutral

- 10 models with unification
- Low unification scale

III. Models with particles in adjoint representation of SU(3)

[Angel, Cai, Rodd, Schmidt, Volkas, 2013], [Fileviez Pérez, Wise, 2009]

Model	Scalar	Fermion
U1	$(\overline{3},1,\frac{1}{3})_S$	$(8,1,0)_F$
U2	$(8, 2, \frac{1}{2})_S$	$(8, 1, 0)_F$
U3	$(8, 2, \frac{1}{2})_S$	$(8, 3, 0)_F$

- Large representations = large contribution to the RG running
- Only one model, U1, without LP
- No model with unification (even if DM added)

Sources of uncertainty

Effects of the order of 1-10 %

Summary and conclusions

- Connect low-energy radiative neutrino mass models with high energy GUTs.
- Gauge unification is possible
- Unification scale in general low
 - Can be pushed up by colored particles
- Further investigation necessary considering other couplings and other models
- arXiv:1605.03986

THANK YOU!