Exploring the Masses of Exotic Heavy Pentaquarks

Ballari Chakrabarti

Department of Physics,
Jogamaya Devi College,
(Affiliated to University of Calcutta)
Kolkata, India.

Aim of the work:

- Probing the masses of exotic heavy pentaquarks considering a di-hadronic state consisting of a meson and a baryon.
- Taking interaction between the hadrons as Van der Waals' type of weak molecular interaction.
- Spin interaction also considered.
- Estimation of the masses of recently reported pentaquark charmonium states $P_c^*(4380)$ and $P_c^*(4450)$.
- Prediction of binding energies of the crypto exotic heavy pentaquark states such as P_s*(1), P_s*(2), P_b*(1), P_b*(2) and other exotic pentaquark states for the charm and bottom families.

Introduction:

• Recent discovery of charmed pentaquarks P_c^* (4380) and P_c^* (4450) in LHCb experiment [1] inspired the search for other exotic heavy pentaquarks.

Decay of Λ_b^0 : $\Lambda_b^0 \rightarrow J/\Psi \ K^- p$. Intermediate states identified as $P_c^*(4380)$ and $P_c^*(4450)$ having width of $205\pm18\pm86$ MeV and $39\pm5\pm19$ MeV. Preferred J^P assignments are of opposite parity.

[1]. R. Aaij et al. (LHCb Collab.) Phys. Rev. Lett. **115** (2015) 072001.

Decay mode of Λ_b^0

$$\Lambda_b^{0} \rightarrow J/\Psi K^- p$$

Methodology

 Assuming the pentaquark state as meson-baryon system the mass formula for the low-lying di-hadronic molecule runs as:

$$M_{Total} = M_1 + M_2 + E_{BE} + E_{SD}$$
 (1)

where M_1 and M_2 represent the masses of the constituent hadrons respectively, E_{BE} represents the binding energy of the di-hadronic system and E_{SD} represents the spin dependent term.

 The interaction potential between the meson-baryon system is taken to be Van der Waals' type of molecular interaction

$$V(r_{12}) = -(K_{mol}/r_{12}) Exp(-C^2r_{12}^2/2)$$
 (2)

where K_{mol} is the residual strength of the strong interaction molecular coupling and C is the effective color screening of the confined gluons.

The binding energy can be expressed as

$$E_{BE} = \langle \Psi(r_{12}) | V(r_{12}) | \Psi(r_{12}) \rangle$$
 (3)

Using the wave function for the ground state of the dihadronic molecule from Statistical Model [2] which runs as

$$|\Psi(r_{12})|^2 = (315/64\pi r_0^{9/2})(r_0 - r_{12})^{3/2} \Theta(r_0 - r_{12})$$
 (4)

corresponding to the linear type of background potential. r_0 is the radius of the di-hadronic molecule, $\Theta(r_0 - r_{12})$ is the usual step function.

Employing the additive rule for the radii of constituent hadrons i.e. $r_0 = r_1 + r_2$, r_1 and r_2 representing the individual radii of the hadrons constituting the molecule.

[2] B.Chakrabarti et al. Physica Scripta 79 (2009) 025103.

• We have executed the binding energy using equation (2), (3) and (4), which yields:

$$E_{BE}=(2.25 \text{ K}_{mol}/r_0)[{}_2F_2[(1.5,1),(2.75,2.25),-\beta]]$$
 (5) if Re β >0, ${}_2F_2$ is the relevant hypergeometric function and β = $C^2r_{12}^2/2$.

• Spin hyperfine interaction can be expressed as

$$E_{SD} = (8\alpha_s/9 M_1 M_2)(S_1.S_2) | \Psi(0)|^2$$
(6)

 α_s is the strong interaction constant, $\mathbf{S_1}$ and $\mathbf{S_2}$ are the spins of the hadrons involved, $|\Psi(0)|^2$ is the di-hadronic wave function at the origin.

• Using this formulation the masses of recently reported pentaquark charmonium states $P_c^*(4380)$ and $P_c^*(4450)$ and several exotic heavy pentaquarks have been calculated and have been compared with experimental findings as well as with other theoretical estimates.

Input values:

• For evaluation of K_{mol}:

X(3872) [3] may be a mesonic molecule of D⁰ and D⁰ indicated by Swanson [4].

Radii for D⁰ is assumed to be 4.5 GeV⁻¹ [5] and the masses of them are taken to be 1864.5 MeV [6].

These are substituted in equation (1) to calculate the binding energy. This is then used in equation (5) to find out the value of K_{mol} . It is found that $K_{mol} = 0.65$.

- C = 50 MeV [7]
- [3] S. K. Choi et al. Phys. Rev. Lett. 91 (2003) 262001.
- [4] E.S. Swanson Phys. Rep. 429 (2006) 243.
- [5] B.Chakrabarti et al. Mod. Phys. Lett. A12 (1997) 2133.
- [6] W.M.Yao et al. J.Phys. G33 (2006) 1.
- [7] A.K.Rai et al. Ind. J. Phys. 80 (2006) 387.

- Values of masses of mesons and baryons used from PDG values [8].
- Radii considered :

```
r(p)=6GeV^{-1}, r(n)=4.7GeV^{-1} [9]
  r(K)=4.77GeV^{-1}[10],
  r(\phi)=5.0 \text{GeV}^{-1}, r(\Upsilon)=1.63 \text{GeV}^{-1} [11],
  r(D^{-})=4.97 \text{GeV}^{-1}, r(B_s)=3.67 \text{GeV}^{-1}, r(B^{0})=3.82 \text{GeV}^{-1}, r(D_s)=4.8 \text{GeV}^{-1} [12]
  r(\Sigma)=3.9 \text{GeV}^{-1}, r(\Delta)=5.98 \text{GeV}^{-1} [13],
  r(\Psi)=2.005 \text{GeV}^{-1} [14].
[8] K.A.Olive et al. (PDG) Chinese Phys. C38 (2014) 090001
[9] S.N.Banerjee et al, Can. J. Phys. 66 (1988) 749
[10] S.N.Banerjee et al, Int. J. Mod. Phys. A2 (1987) 1829
[11] S.N.Banerjee et al, Int. J. Mod. Phys. A4 (1989) 943, 5575
[12] B.Chakrabarti et al. Mod. Phys. Lett. A12 (1997) 2133
[13] R. Ghosh et al J. Mod. Phys. 6 (2015) 2070
[14] C.Hong et al. Chinese Phys. Lett. 18 (2001) 1558
```

Estimation of the masses of the pentaquark charmonium states P_c^* (4380) and P_c^* (4450)

States (uudcc)	Molecular form considered	Estimated Mass in MeV [13]	Experimental Mass in MeV [1]
P _c * (spin 3/2)	P – J/Ψ (uud - cc)	4171	4380±8±29
P _c * (spin 5/2)	Δ – J/Ψ (uud – cc)	4492	4449±1.7±2.5

Estimation of the masses of the crypto-exotic heavy pentaquarks

States & Configuration	Molecular form considered	Estimated Mass in GeV	Experimental Mass in GeV	Others Mass in GeV
P _s * (1/2)+ P _s * (3/2)+ (uudss)	p + φ Δ + φ	2.110 2.381	 	2.303 [15] 2.373 [15]
P _b * (1/2)+ P _b * (3/2)+ (uudbb)	p + Υ Δ + Υ	10.639 10.881		10.743 [15] 10.813 [15]

[15] V. Kopeliovich et al. arxiv: hep-ph 1510.05958

Estimation of the other exotic heavy pentaquarks in charm sector

Particl config	es & uration	Molecular form considered	Estimated mass in GeV	Experimental mass in GeV	Others mass in GeV
Θ _c ⁰	(uuddc)	p + D ⁻ n + D ⁰	2.656 2.670	3.099±0.003 ±0.005 [16]	2.650 [17] 2.710 [18]
N_c^0	(uudsc)	p + D ⁰	2.752		2.870 [18]
Ξ ₀	(uussc)	$\Sigma^+ + D^0$	2.905		3.135 [18]
θ_{cs}^{++}	(uudcs)	p + D ⁰	2.751		2.427 [19]

[16] A.Akas et al. (H1 Collab.) Phys. Lett. **B588** (2004) 17

[17] D.Diakonov arxiv: hep-ph 1003.2157

[18] R.L.Jaffe et al. Phys. Rev. Lett. 91(2003)232003;

M. Karliner et al. Phys. Lett. **B575** (2003) 249

[19] N.Tazimi et al. arxiv: hep-ph 1601.00642

Estimation of the other exotic heavy pentaquarks in bottom sector

Particles & configuration	Molecular form considered	Estimated mass in GeV	Experimental Mass in GeV	Others Mass in GeV
Θ _b ⁺ (uuddb)	p + B ⁰ n + B ⁺	6.043 6.067		6.050 [18]
N _b ⁺ (uudsb)	p + B _s	6.127		6.210 [18]
Ξ _b ⁺ (uussb)	$\Sigma^+ + B_s$	6.366		6.351 [18]
θ _{bs} ⁺ (uudbs)	p + B _s	6.128		5.752 [19]

Conclusions:

- We have investigated several exotic heavy pentaquark systems as hadronic composites of a meson and a baryon in the context of Van der Waals' type of molecular interaction acting between them. Statistical Model wave function considered is good enough for describing the hadron.
- The estimated masses of $P_c^*(4380)$ and $P_c^*(4450)$ in this formulation compare favorably well with the experimental data [1].
- Other crypto-exotic heavy pentaquark masses such as $P_s^*(1/2)^+$ and $P_s^*(3/2)^+$ and $P_b^*(3/2)^+$ in the strange and bottom families have been predicted with the hope that these would be detected in near future.

- Heavy exotic pentaquarks consisting of at least one heavy quark in the charm and bottom families such as $\Theta_c^0 N_c^0 \Xi_c^0 \Theta_b^+ N_b^+ \Xi_b^+$ etc. have been probed and compared with other theoretical works.
- Treating the pentaquark as a hadronic composite system would enlighten us about the spectroscopy of the much awaited heavy pentaquarks.
- This naïve model could also be applied for the investigations of the other multiquark systems such as tetraquark, hexaquark systems also.
- Description of these exotic pentaquarks have also been probed using diquark-diquark-antiquark model by us [20].

[20] A. Chandra et al. Mod. Phys. Lett. A27 (2012) 1250006.