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Parametric uncertainties in BSM searches
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Partial Higgs widths

Uncertainties in standard model
parameters limit possible precision in
searches for new physics.

Partial widths into bb, cc, and gg are
more dependent on parametric
uncertainties than on other theory.

Lattice QCD can provide the most
precise determinations of the
parameters as, me, and me.

LHC Higgs Cross Section Working Group
M. Grazzini, R. Harlander, B. Mellado, P. Musella (Eds.)
2016 (Draft)

Table 3.11: SM Higgs partial widths and their relative parametric (PU) and theoretical (THU) uncertainties for
a selection of Higgs masses. For PU, all the single contributions are shown. For these four columns, the upper
percentage value (with its sign) refers to the positive variation of the parameter, while the lower one refers to the
negative variation of the parameter.
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Lattice in the 21st century
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For the past ~ten years, it has been possible to use
lattice QCD Monte Carlo methods to calculate simple
guantities with understood, complete error budgets.
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What is “simple”?

e Simplest: stable mesons.

e Qver the last ten years, many key quantities. Hadronically stable
mesons, especially:

e Heavy and light meson decay constants,
e Semileptonic decays,

® Meson-antimeson mixing.

e Make possible important determinations of 8 CKM matrix elements,
5 quark masses, the strong coupling constant.

e Now: 1T systems, nucleons
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Coming US experimental program

e Next five years: lattice calculations are needed throughout the
entire future US experimental program.

e g-2

e | HCb, Belle-2: continued improvement of CKM results
e muZe, LBNE, Nova: nucleon matrix elements.

e Underground LBNE: proton decay matrix elements.

e | HC, Higgs decays: lattice provides the most accurate as and mc
now, and my in the future
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How?
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(Pys0(t = 0) | Py5(t)) = Cexp(—Mt) + excited states.

If the two quarks were a u and a u, the slope would give My, C would be proportional to Fr2.
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To obtain as, m¢, or mp via the lattice
® |n principle,

® can get mus from miatt by equating Green’s functions calculated in
perturbation theory in the two regulators:

® |n practice,

e (Calculating short-distance quantities to third order perturbation
theory is hard and messy.

e (alculating some short-distance quantities nonperturbatively is
easy and clean.

® The art of determining as or mq via the lattice is finding a quantity
as easy to calculate as possible

e with continuum perturbation theory, and

e nonperturbatively with the lattice.
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Mme

WEIGHTED AVERAGE
1.275+0.004 (Error scaled by 1.0)
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K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update
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The most precise non-
lattice determinations of
mcuse e*e” annihilation

data and ITEP sum rules.

(Karlsruhe group,
Chertyrkin et al.)

Recent lattice
determination of HPQCD
uses the same type of
perturbation theory, but
lattice QCD to supply the
correlation functions
rather than experiment.
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Moments of the heavy quark production cross section in e*e- annihilation
can be related to the derivatives of the vacuum polarization at g*2=0.

_ B 1272 ( d
Dyt Dyt M, = (

dq)HQ< ) oy

Can be calculated in perturbation theory.
Known to O(as®) (Chetyrkin et. al.)
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Lattice QCD

can also compute such correlation functions with high accuracy.

Correlation functions of all currents can be
calculated in perturbation theory (and with the
lattice). The most precise mc: can be obtained
by choosing the one that is most precise on the
lattice: the pseudoscalar correlator.

@%%ﬁ @%%ﬁ
G(t) = a®> (amq;,)X0ljs(x, 1)j5(0, 0)]0),

1078 e T G, =Y (t/a)"G(1),

Perturbation theory to as3 from the Karlsruhe group.

<m(0)|m(T)>
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Technical tricks to make the lattice calculation more precise

1078
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Choose pseudoscalar (easiest) current correlator. : A
(Easier to calculate than a pion or charmonium b .

mass.)

<m(0)|m(T)>

107° &

107°

In matching perturbative and nonperturbative results, divide both by the tree
level correlator. (Removes leading discretization errors.)

In the lattice calculation of, for example, the charm correlator, use Mn. as
experimental input to set the energy scale. (Reduces sensitivity to the
tuning of the lattice mass used.)

G4/GY for n = 4
R, = { cm‘i1 4
"5 (G /G for n = 6
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mec results

WEIGHTED AVERAGE

1.275+0.004 (Error scaled by 1.0)
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(Confidence Level = 0.692)

m,(3)
a’ extrapolation 0.2%
Perturbation theory
Statistical errors 0.1
m,, extrapolation 0.1
Errors in ry 0.2
Errors in r|/a 0.1
Errors in m,, , m,, 0.2
« prior 0.1
Gluon condensate 0.0

Total

m.(mg, n, =4) = 1.273(6) GeV
HPQCD, McNeile et al.

Uncertainty is dominated by the
same perturbation theory used in
all of the most precise results.

ICHEP 2016  12/25



Why can lattice determinations of m. from correlation
functions be more precise than those from e*e™?

107 e BERRARRERR R ]
[ Moments of correlation functions are even
easier than what | earlier told you have
been considered the easiest quantities for
the last ten years.

We need the correlation functions at finite

T, and not their asymptotic form at large T.

<m(0)|m(T)>

Because this | is cleaner data than this.
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WEIGHTED AVERAGE
4.177+0.004 (Error scaled by 1.0)
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The most precise non-
lattice determinations of
mcuse e*e- annihilation
data and ITEP sum rules.
(Karlsruhe group,
Chertyrkin et al.)

Recent lattice
determination uses the
same type of perturbation
theory, but lattice QCD to
supply the correlation
functions rather than
experiment.

For my, perturbative errors
are tiny. (a(mp)*<<a(mc)?.)
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mp results

For mp, these lattice correlator methods are just barely working at a=0.045 fm.

(They treat the b as light compared with 1/a.)
Need a=0.03 fm to be comfortable.

Discretization errors and statistics dominate current uncertainties. Both can be

attacked with brute force computing power.

Needed configurations are projected to be generated in the next few years.
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4.177+0.004 (Error scaled by 1.0)
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m;,(10)

a® extrapolation

Perturbation theory 0.1

Statistical errors

m;, extrapolation 0.1
Errors in ry 0.1
Errors in r|/a 0.3
Errors in m,, , m,, 0.1
o prior 0.1
Gluon condensate 0.0

Total

my(my, np =5) = 4.164(23) GeV

ICHEP 2016

15/25



Jt
'3

mp results

For mp, these lattice correlator methods are just barely working at a=0.045 fm.
(They treat the b as light compared with 1/a.)

Need a=0.03 fm to be comfortable.

Discretization errors and statistics dominate current uncertainties. Both can be
attacked with brute force computing power.

Needed configurations are projected to be generated in the next few years.

WEIGHTED AVERAGE

HrT000t ‘E”Ta'e" o ) The most precise determinations of my using
,,,,,,, pemaONIZ 14 e % moments of e*e- data arrive at different
—_ AYALA 14A THE : . - -
o __BERNARDON o L estimates of the precision from the same
L R o - data and the same perturbation theory.
———+—— - - - NARISON 13 THEQ e
T NiRicoN——TarTREO 04 —
ChH € — BODENSTEIN 12 Tt

LATT

Coming lattice calculations should be able to

A o i confirm (or not) the more more precise
— L . 10A  BABR 0.0 .
D 4 =" - MCNEILE 10 LATT 03 C|a|mS.
---------- CHETYRKIN 09 THEO 0.8 . .
j — %EJE%EA 322 E%EE '8 Unlike mc, where the lattice and e*e-
: 06 . . .
~ BOUGHEZAL 06 THEQ 02 determinations share the same perturbation
T PINEDA 06 THEO Ol theory, perturbative uncertainties are neglible
T mooes w0 o and the lattice and e*e- determinations will
- EDeMuem o THEO have totally independent uncertainties.

— !> MAHMOOD 03 CLEO
~~~~~~~ BRAMBILLA 02 THEO 0.2
— PENIN 02 THEO 5.8

18.8
(Confidence Level = 0.597)
| | J

Paul Mackenzie ICHEP 2016  16/25



Jt
'3

ds

There are multiple ways of determining as,
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Particle Data Group, revised September 2015 by
S. Bethke, G. Dissertori, and G.P. Salam.
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as results: correlator method

_ OfM_S(M z)

HPQCD (wilson loops)
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Errors. inm,,m, 00
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Gluon condensate 0.2

Total

Results are dominated by perturbation
theory. Better numerical data will help
bound perturbative coefficients.
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as results: Wilson loops

as can be determined with lattice calculations of many other quantities,
e.g., the heavy quark potential.

to obtain as MS.

Lattice MS

Lattice calculates the heavy quark potential from Wilson loops.

HPQCD has determined as directly from Wilson loops.

Result compatible with their correlator result, similar precision:
as = 0.1184(6), but totally different uncertainties,
heavy use of lattice perturbation theory.

A. Bazavov et al. use the potential and obtain
as = 0.1166+0.0012-0.0008.
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as, other lattice results

There are numerous good ways of determining as using lattice QCD.

® The Adler function, JLQCD. physRev. D82 2010) 074505
® as=0.1181 £ 0.0003+0.0014-0.0012

® The Schrodinger functional, PACS-CS. Jxep 0910:053.2009.
e as=0.1205(8)(5)(+0/-17)

® The ghost-gluon vertex, European Twisted Mass Collaboration
(ETM). Phys.Rev.Lett. 108 (2012) 262002.

e qs=0.1200(14)
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The lattice results are dominated by the two
most precise results from HPQCD, but there
are several other lattice results from Europe
and Japan, all of which agree with each other
and each which is more precise than any non-
lattice resuilt.

Best lattice results (HPQCD) 0.1184(006)
Average of other lattice results omitting the best two 0.1188(09)
World average omitting lattice results (PDG) 0.1175(17)
Complete world average (PDG) 0.1185(14)
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Prospects: m: and mp

e (Correlator methods are currently the most precise, both with
e*e and with lattice methods.

® [or me, correlator moments are simple to calculate on the Iattice
e Should be checkable by many lattice groups.
® Results should be of comparable precision to determinations from e*e-.
e Uncertainty will be dominated by perturbation theory.

® For mp, most precise lattice determination relies on treating b quark
as light compared to 1/a.

® Possible with HISQ fermions, may be hard for other lattice methods.

® The lattice result should catch up to the most precise of the e*e- results
with more CPU power.

® The resulting uncertainties in the e*e- determinations and the lattice
determinations will be totally independent of each other (unlike the
case for m¢); perturbative uncertainty is negligible.
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Prospects: as

® The uncertainties of the Wilson loop and correlator
determinations of as are dominated by perturbation theory and
will improve somewhat.

® (s can be determined well from lattice calculations of many
different quantities. There is likely to be continued improvement
In the apparent robustness of the lattice results as more
quantities are calculated with increasing precision.

® As of now there are results from
e six different quantities,
e five different groups on three continents,
e four different fermion discretizations.

® Results are completely independent and consistent, and each is
more precise than the most precise non-lattice determination.

‘*‘. Paul Mackenzie ICHEP 2016  23/25



Jt
'3

Prospects for improvement

e Future Higgs factories like the high-luminosity ILC aim to measure branching
fractions to sub-per cent accuracy.

® Since parameter uncertainties will limit the predictive power of theory,
some have questioned value of such measurements.

e | attice determinations will have no problem improving to the needed

accuracy.
omp(10)  das(myz) me(3) | dc dg
current errors [10] | 0.70 0.63 0.61 | 0.77 0.89 0.78
+PT | 0.69 0.40 0.34 | 0.74 057 04
+ LS| 0.30 0.53 0.53 | 0. 65
+LS? | 0.14 0.35__—T0531020 0
+PT+LS| 028 0.17 0.21 [0.30 027 0.21
+ PT + LS* | 0.12 0.14 0.20 |0.13 0.24 0.17
+ PT + LS?* + ST | 0.09 0.08 0.20 | 0.10 0.22 0.09

ILC goal

0.30 0.70 0.60

Lepage, Mackenzie, and Peskin
estimated improvements to
parameters and partial width
predictions arising from improved
perturbation theory, reduced lattice
spacing, and increased statistics.

Table 1: Projected fractional errors, in percent, for the MS QCD coupling and heavy quark
masses under different scenarios for improved analyses. The improvements considered are:
PT - addition of 4*® order QCD perturbation theory, LS, LS? - reduction of the lattice
spacing to 0.03fm and to 0.023fm; ST - increasing the statistics of the simulation by a
factor of 100. The last three columns convert the errors in input parameters into errors on
Higgs couplings, taking account of correlations. The bottom line gives the target values of Lepage, Mackenzie, Peskin;

these errors suggested by the projections for the ILC measurement accuracies.
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Conclusions

e | attice calculations now provide the most precise determinations
of as and mc.. They soon will also provide the most precise
determination of mp.

® Now that lattice methods are well established, they are starting to
play a role in unexpected places throughout the HEP program,

such as Higgs physics.
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Perturbative coefficients for moments

TABLE III.

Perturbation theory coefficients (n, = 3) for r,

[2-6]. Coefficients are defined by r, = 1 + 3.7, J'ai/[_s(’“) for

u = my(u). The third-order coefficients are exact for 4 = n =
10. The other coefficients are based upon estimates; we assign

conservative errors to these.

n Fnl Fn2 Fn3

4 0.7427 —0.0577 0.0591
6 0.6160 0.4767 —0.0527
8 0.3164 0.3446 0.0634
10 0.1861 0.2696 0.1238
12 0.1081 0.2130 0.1(3)
14 0.0544 0.1674 0.1(3)
16 0.0146 0.1293 0.1(3)
18 —0.0165 0.0965 0.1(3)

Paul Mackenzie

HPQCD take uncalculated
coefficients in series for moments
Fnj ~ 0(05 as(mq)j);

further constrain the possible
sizes for coefficients by comparing
nonperturbative results for many
quark masses with perturbation
theory using Baysian priors for
higher order terms.
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