Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Pier Paolo Giardino
Brookhaven National Laboratory

ICHEP 2016,
Chicago

Based on
arXiv:1607.0425 [hep-ph];

Giuseppe Degrassi, P.P.G, Fabio Maltoni, Davide Pagani.
Framework

\[V(\phi) = -\mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2 \]

\[V(H) = \frac{1}{2} M_H^2 H^2 + \frac{M_H^2}{2v} H^3 + \frac{M_H^2}{8v^2} H^4 \]
The self couplings are fixed once the Higgs mass and the vev are known.

\[V(\phi) = -\mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2 \]

\[V(H) = \frac{1}{2} M_H^2 H^2 + \frac{M_H^2}{2\nu} H^3 + \frac{M_H^2}{8\nu^2} H^4 \]
The self couplings are fixed once the Higgs mass and the vev are known.

Trilinear coupling can be investigated at LHC from Higgs Pair Production.
The self couplings are fixed once the Higgs mass and the vev are known.

Trilinear coupling can be investigated at LHC from Higgs Pair Production.

The quartic coupling will not be measured at LHC nor at ILC/CLIC.
Framework

\[V(\phi) = -\mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2 \]

\[V(H) = \frac{1}{2} M_H^2 H^2 + \left(\frac{M_H^2}{2v} \right) H^3 + \left(\frac{M_H^2}{8v^2} \right) H^4 \]

The self couplings are fixed once the Higgs mass and the vev are known.

Trilinear coupling can be investigated at LHC from Higgs Pair Production.

The quartic coupling will not be measured at LHC nor at ILC/CLIC.

How can we exclude an anomalous trilinear?

(maybe with the wrong sign)
Higgs Pair Production

- Very small Cross Section.
 - Heavier final state.
 - Additional weak coupling.
- At least one Higgs into bottoms.

\[
\begin{align*}
\text{at least one Higgs into bottoms.} \\
\text{Assuming no change in the other Higgs couplings, ATLAS and CMS at 8 TeV exclude the regions} \\
(-\infty, -12] \cup [17, \infty) \\
(-\infty, -17.5] \cup [22.5, \infty) \\
\text{At 3000 fb}^{-1} \text{ the exclusion region should be} \\
(-\infty, -1.3] \cup [8.7, \infty)
\end{align*}
\]

\[gg \to H \sim 50 \text{ pb (13 TeV)}
\]
\[gg \to HH \sim 35 \text{ fb (13 TeV)}
\]
The trilinear appears at NLO in Single Higgs processes.
The trilinear appears at NLO in Single Higgs processes.

The modification of the trilinear could be described in a κ-framework

$$V_{H^3} = \lambda_3 v H^3 \equiv \kappa \lambda_3^{SM} v H^3$$

For similar ideas:

M. McCullough Phys. Rev. D90 (2014), no. 1 015001
Single Higgs

The trilinear appears at NLO in Single Higgs processes.

The modification of the trilinear could be described in a κ-framework

$$V_{H3} = \lambda_3 v H^3 \equiv \kappa \lambda_3^{SM} v H^3$$

Due to the presence of different Loop structures these contributions cannot be captured by a local rescaling.

For similar ideas:
M. McCullough Phys. Rev. D90 (2014), no. 1 015001
C_1 coefficients

$$\Sigma_{NLO} = Z_H \Sigma_{LO}(1 + \kappa_\lambda C_1)$$
C_1 coefficients

Contains QCD corrections

$$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa \lambda C_1)$$
\[\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa \chi C_1) \]

- Contains QCD corrections
- Depends on the process
C_1 coefficients

Contains QCD corrections

Depends on the process

$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa \chi C_1)$

Higgs wave function renormalization
C_1 coefficients

Contains QCD corrections

Depends on the process

$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa \chi C_1)$

Higgs wave function renormalization

$Z_H = \frac{1}{1 - \kappa^2 \delta Z_H}$
C₁ coefficients

- Contains QCD corrections
- Depends on the process
- Higgs wave function renormalization

\[\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_\lambda C_1) \]

\[Z_H = \frac{1}{1 - \kappa_\lambda^2 \delta Z_H} \]

The range of validity of our calculation is \[|\kappa_\lambda| \lesssim 20 \]
\[\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_H C_1) \]

\[Z_H = \frac{1}{1 - \kappa_H^2 \delta Z_H} \]

The range of validity of our calculation is \(|\kappa_H| \lesssim 20 \)

\[C_1 = \frac{\int 2 \Re (\mathcal{M}^0 \ast \mathcal{M}_\lambda^{1 SM})}{\int |\mathcal{M}^0|^2} \]
C_1 coefficients

Contains QCD corrections

Depends on the process

$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa \lambda C_1)$

Higgs wave function renormalization

$Z_H = \frac{1}{1 - \kappa^2 \delta Z_H}$

The range of validity of our calculation is $|\kappa \lambda| \lesssim 20$

Integration over Phase space, convolution with PDF, sum over initial states.

$C_1 = \frac{\int 2\Re(\mathcal{M}^{0*}\mathcal{M}_\lambda^{1_{SM}})}{\int |\mathcal{M}^0|^2}$
C₁ coefficients

\[\Sigma_{NLO} = Z_H \Sigma_{LO}(1 + \kappa_\lambda C_1) \]

Contains QCD corrections

Higgs wave function renormalization

Depends on the process

| \kappa_\lambda | \lesssim 20

The range of validity of our calculation is

\[Z_H = \frac{1}{1 - \kappa_\lambda^2 \delta Z_H} \]

Integration over Phase space, convolution with PDF, sum over initial states.

Amplitudes generated by FeynArts, computed by FormCalc interfaced to Loop-Tools, checked with FeynCalc.
C_1 coefficients: 2 Loops
\(C_1\) coefficients: 2 Loops

\[\sigma(gg \rightarrow H)\] and \(\Gamma(H \rightarrow \gamma\gamma)\) are more challenging.
We computed the correction with an asymptotic expansion in large top mass.

$\sigma(gg \rightarrow H)$ and $\Gamma(H \rightarrow \gamma\gamma)$ are more challenging.
C_1 coefficients: 2 Loops

$\sigma(gg \to H)$ and $\Gamma(H \to \gamma\gamma)$ are more challenging.

The identification of the contribution to C_1 is less straightforward since λ appears also in diagrams involving Goldstone bosons.
The identification of the contribution to C_1 is less straightforward since λ appears also in diagrams involving Goldstone bosons.

We used the unitary gauge. We checked the complete result with the literature.
The identification of the contribution to C_1 is less straightforward since λ appears also in diagrams involving Goldstone bosons.

We used the unitary gauge. We checked the complete result with the literature.

The corrections were computed with a Taylor expansion for small momentum.
C_1 coefficients: 2 Loops

\[\sigma(gg \to H) \] and \[\Gamma(H \to \gamma\gamma) \]

are more challenging.

The identification of the contribution to \(C_1 \) is less straightforward since \(\lambda \) appears also in diagrams involving Goldstone bosons.

We used the unitary gauge. We checked the complete result with the literature.

The corrections were computed with a Taylor expansion for small momentum.
Results: σ

<table>
<thead>
<tr>
<th>C_1^σ [%]</th>
<th>ggF</th>
<th>VBF</th>
<th>WH</th>
<th>ZH</th>
<th>ttH</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 TeV</td>
<td>0.66</td>
<td>0.65</td>
<td>1.05</td>
<td>1.22</td>
<td>3.78</td>
</tr>
<tr>
<td>14 TeV</td>
<td>0.66</td>
<td>0.64</td>
<td>1.03</td>
<td>1.18</td>
<td>3.47</td>
</tr>
</tbody>
</table>

Legend for Diagram:
- **ggF**
- **VBF**
- **ZH**
- **WH**
- **ttH**
Results: σ

<table>
<thead>
<tr>
<th>C_1^σ [%]</th>
<th>ggF</th>
<th>VBF</th>
<th>WH</th>
<th>ZH</th>
<th>$t\bar{t}H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 TeV</td>
<td>0.66</td>
<td>0.65</td>
<td>1.05</td>
<td>1.22</td>
<td>3.78</td>
</tr>
<tr>
<td>14 TeV</td>
<td>0.66</td>
<td>0.64</td>
<td>1.03</td>
<td>1.18</td>
<td>3.47</td>
</tr>
</tbody>
</table>

$tt\bar{t}H$ receives sizeable positive corrections.

All the other receive very small positive corrections.
Results: σ

<table>
<thead>
<tr>
<th>C_1^σ [%]</th>
<th>ggF</th>
<th>VBF</th>
<th>WH</th>
<th>ZH</th>
<th>$t\bar{t}H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 TeV</td>
<td>0.66</td>
<td>0.65</td>
<td>1.05</td>
<td>1.22</td>
<td>3.78</td>
</tr>
<tr>
<td>14 TeV</td>
<td>0.66</td>
<td>0.64</td>
<td>1.03</td>
<td>1.18</td>
<td>3.47</td>
</tr>
</tbody>
</table>

$t\bar{t}H$ receives sizeable positive corrections.

All the other receive very small positive corrections.

Here $\delta \sigma_\lambda$ is the same of the SM ($\kappa_\lambda=1$)
Results: BR

<table>
<thead>
<tr>
<th>$C_1 [%]$</th>
<th>$\gamma \gamma$</th>
<th>ZZ</th>
<th>WW</th>
<th>$f \bar{f}$</th>
<th>gg</th>
</tr>
</thead>
<tbody>
<tr>
<td>on-shell H</td>
<td>0.49</td>
<td>0.83</td>
<td>0.73</td>
<td>0</td>
<td>0.66</td>
</tr>
</tbody>
</table>

![Graph showing the variation of BR with κ_3 for different processes]
The corrections to BR are smaller than the ones to the Γ.

Results: BR

<table>
<thead>
<tr>
<th>$C_1^I[%]$</th>
<th>$\gamma\gamma$</th>
<th>ZZ</th>
<th>WW</th>
<th>ff</th>
<th>gg</th>
</tr>
</thead>
<tbody>
<tr>
<td>on-shell H</td>
<td>0.49</td>
<td>0.83</td>
<td>0.73</td>
<td>0</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Results: BR

<table>
<thead>
<tr>
<th>$C_1^i[%]$</th>
<th>$\gamma\gamma$</th>
<th>ZZ</th>
<th>WW</th>
<th>ff</th>
<th>gg</th>
</tr>
</thead>
<tbody>
<tr>
<td>on-shell H</td>
<td>0.49</td>
<td>0.83</td>
<td>0.73</td>
<td>0</td>
<td>0.66</td>
</tr>
</tbody>
</table>

The corrections to BR are smaller than the ones to the Γ.

However the (positive) δBR are usually larger than the $\delta\sigma$.

In other words, in the range close to the SM, the decays are more sensitive to κ_λ than the production processes.

$$\delta BR_{\lambda_3}(i) = \frac{(\kappa_\lambda - 1)(C_1^\Gamma(i) - C_1^{\Gamma_{tot}})}{1 + (\kappa_\lambda - 1)C_1^{\Gamma_{tot}}}$$
All the available Single Higgs processes depend on the single Parameter κ_λ. So in principle a global fit can be very powerful in constraining the Higgs trilinear coupling.
Constraints on λ: present

$$
\chi^2(\kappa_\lambda) \equiv \sum_{\mu_i} \frac{(\mu_i^f(\kappa_\lambda) - \bar{\mu}_i^f)^2}{(\Delta(\kappa_\lambda))^2}
$$
Constraints on λ: present

$$\chi^2(\kappa, \lambda) \equiv \sum_{i} \frac{(\mu^f_i(\kappa, \lambda) - \bar{\mu}^f_i)^2}{(\Delta(\kappa, \lambda))^2}$$

In this fit we consider different “scenarios”.

Data from arXiv:1606.02266

ATLAS-CMS 8 TeV data combination
Constraints on λ: present

$$\chi^2(\kappa \lambda) \equiv \sum \frac{(\mu_i^f(\kappa \lambda) - \bar{\mu}_i^f)^2}{(\Delta(\kappa \lambda))^2}$$

In this fit we consider different “scenarios”.

Data from arXiv:1606.02266

For ggF+VBF: $\kappa_{\lambda}^{\text{best}} = -0.24$

$\kappa_{\lambda}^{1\sigma} = [-5.65, 11.21] \quad \kappa_{\lambda}^{2\sigma} = [-9.43, 16.97]$
Constraints on λ: present

$$\chi^2(\kappa_\lambda) \equiv \sum \frac{(\mu_{i}^{f}(\kappa_\lambda) - \bar{\mu}_{i}^{f})^2}{(\Delta(\kappa_\lambda))^2}$$

In this fit we consider different “scenarios”.

Data from arXiv:1606.02266

ATLAS-CMS 8 TeV data combination

For ggF+VBF: $\kappa_{\lambda}^{\text{best}} = -0.24$

$\kappa_{\lambda}^{1\sigma} = [-5.65, 11.21] \quad \kappa_{\lambda}^{2\sigma} = [-9.43, 16.97]$

Requiring $p>0.05$ we are able to exclude, at more than 2 σ, that a model with an anomalous coupling can explain the data if $\kappa_{\lambda} < -14.26$
Using the uncertainties presented in arXiv:1312.4974, and assuming that LHC will measure SM, we can estimate the future capabilities of LHC.
Constraints on λ: future

Using the uncertainties presented in arXiv:1312.4974, and assuming that LHC will measure SM, we can estimate the future capabilities of LHC.

For CMS-HL-II 3000 fb$^{-1}$

$$\kappa_1^{\lambda} = [-0.75, 4.23] \quad \kappa_2^{\lambda} = [-1.99, 6.77]$$

$$\kappa_\lambda^{P>0.05} = [-4.10, 9.77]$$
Constraints on λ: future

A more reliable approach is to consider central values compatible with SM.

We produce a collection of pseudo-measurements randomly generated with a gaussian distribution around the SM.

1) best values, 2) 1σ region lower limit, 3) 1σ region upper limit, 4) 2σ region lower limit, 5) 2σ region upper limit, 6) $p > 0.05$ region lower limit, 7) $p > 0.05$ region upper limit, 8) 1σ region width, 9) 2σ region width, 10) $p > 0.05$ region width.
Constraints on λ: future(!?!)

An interesting scenario is the one where the uncertainties are 1% for all the channels.

As expected a precise measurement of the ttH would lead to a sizeable improvement in the fit.
Conclusions
Conclusions

- The Higgs trilinear coupling can be investigated from single Higgs processes.
Conclusions

- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.
Conclusions

- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.
- This approach is model dependent,
Conclusions

- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.
- This approach is model dependent,
 - however the condition for the other couplings to be SM can be lifted.
Conclusions

- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.
- This approach is model dependent,
 - however the condition for the other couplings to be SM can be lifted.
- The biggest role is played by the top-top-Higgs associated production.