Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Pier Paolo Giardino

Brookhaven National Laboratory

ICHEP 2016, Chicago

Based on arXiv:1607.0425 [hep-ph];

Giuseppe Degrassi, P.P.G, Fabio Maltoni, Davide Pagani.

quantumdiaries.com

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$V(H) = \frac{1}{2}M_H^2H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^2}{8v^2}H^4$$

quantumdiaries.com

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$V(H) = \frac{1}{2}M_H^2H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^2}{8v^2}H^4$$

The self couplings are fixed once the Higgs mass and the vev are known.

quantumdiaries.com

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$V(H) = \frac{1}{2}M_H^2H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^2}{8v^2}H^4$$

- The self couplings are fixed once the Higgs mass and the vev are known.
- Trilinear coupling can be investigated at LHC from Higgs Pair Production.

quantumdiaries.com

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$V(H) = \frac{1}{2}M_H^2H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^2}{8v^2}H^4$$

- The self couplings are fixed once the Higgs mass and the vev are known.
- Trilinear coupling can be investigated at LHC from Higgs Pair Production.
- The quartic coupling will not be measured at LHC nor at ILC/CLIC.

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$V(H) = \frac{1}{2}M_H^2H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^2}{8v^2}H^4$$

- The self couplings are fixed once the Higgs mass and the vev are known.
- Trilinear coupling can be investigated at LHC from Higgs Pair Production.
- The quartic coupling will not be measured at LHC nor at ILC/CLIC.

How can we exclude an anomalous trilinear?

(maybe with the wrong sign)

Higgs Pair Production

- Very small Cross Section.
 - Heavier final state.
 - Additional weak coupling.
- At least one Higgs into bottoms.

$$gg \to H \sim 50 \text{ pb (13 TeV)}$$

 $gg \to HH \sim 35 \text{ fb (13 TeV)}$

$$gg o HH \sim 35 \; \mathrm{fb} \; (13 \; \mathrm{TeV})$$

 $(-\infty, -12] \cup [17, \infty)$ Assuming no change in the other Higgs couplings, ATLAS and CMS at 8 TeV exclude the regions $\ (-\infty, -17.5] \cup [22.5, \infty)$

arXiv:1509.0467; arXiv:1506.0028; arXiv:1603.0689

At 3000 fb⁻¹ the exclusion region should be

$$(-\infty, -1.3] \cup [8.7, \infty)$$

Single Higgs

The trilinear appears at NLO in Single Higgs processes.

Single Higgs

The trilinear appears at NLO in Single Higgs processes.

The modification of the trilinear could be described in a K-framework

$$V_{H^3} = \lambda_3 v H^3 \equiv \kappa_\lambda \lambda_3^{SM} v H^3$$

For similar ideas:

M. McCullough Phys. Rev. D90 (2014), no. I 015001

M. Gorbahn and U. Haisch, arXiv:1607.03773 [hep-ph];

Single Higgs

The trilinear appears at NLO in Single Higgs processes.

The modification of the trilinear could be described in a K-framework

$$V_{H^3} = \lambda_3 v H^3 \equiv \kappa_\lambda \lambda_3^{\rm SM} v H^3$$

For similar ideas:

M. McCullough Phys. Rev. D90 (2014), no. I 015001

M. Gorbahn and U. Haisch, arXiv:1607.03773 [hep-ph];

$$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_{\lambda} C_1)$$

Contains QCD corrections
$$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_{\lambda} C_1)$$

Depends on the process

$$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_{\lambda} C_1)$$

Higgs wave function renormalization

$$Z_H = \frac{1}{1 - \kappa_\lambda^2 \delta Z_H}$$

Depends on the process

$$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_{\lambda} C_1)$$

Higgs wave function renormalization

$$Z_H = \frac{1}{1 - \kappa_\lambda^2 \delta Z_H}$$

The range of validity of our calculation is

$$|\kappa_{\lambda}| \lesssim 20$$

Depends on the process

$$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_{\lambda} C_1)$$

Higgs wave function renormalization

$$Z_H = \frac{1}{1 - \kappa_\lambda^2 \delta Z_H}$$

The range of validity of our calculation is

$$|\kappa_{\lambda}| \lesssim 20$$

$$C_1 = \frac{\int 2\Re(\mathcal{M}^{0*}\mathcal{M}_{\lambda_3^{\mathrm{SM}}}^1)}{\int |\mathcal{M}^0|^2}$$

Higgs wave function renormalization

$$Z_H = \frac{1}{1 - \kappa_\lambda^2 \delta Z_H}$$

The range of validity of our calculation is

$$|\kappa_{\lambda}| \lesssim 20$$

Integration over
Phase space,
convolution with PDF,
sum over initial states.

$$C_1 = \frac{0.02\Re(\mathcal{M}^{0*}\mathcal{M}_{\lambda_3^{\mathrm{SM}}}^1)}{0.022}$$

$$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_{\lambda} C_1)$$

Higgs wave function renormalization

$$Z_H = \frac{1}{1 - \kappa_\lambda^2 \delta Z_H}$$

The range of validity of our calculation is

$$|\kappa_{\lambda}| \lesssim 20$$

Integration over
Phase space,
convolution with PDF,
sum over initial states.

$$C_1 = \frac{\iint 2\Re(\mathcal{M}^{0*}\mathcal{M}_{\lambda_3^{\text{SM}}}^1)}{\iint |\mathcal{M}^0|^2}$$

Amplitudes
generated by
FeynArts, computed
by FormCalc
interfaced to
Loop-Tools, checked
with FeynCalc.

C_I coefficients: 2 Loops

C₁ coefficients: 2 Loops

 $\sigma(gg \rightarrow H)$ and $\Gamma(H \rightarrow \gamma\gamma)$ are more challenging.

C_I coefficients: 2 Loops

 $\sigma(gg \rightarrow H)$ and $\Gamma(H \rightarrow \gamma\gamma)$ are more challenging.

We computed the correction with an asymptotic expansion in large top mass.

C_I coefficients: 2 Loops

 $\sigma(gg \to H)$ and $\Gamma(H \to \gamma\gamma)$ are more challenging.

The identification of the contribution to C_1 is less straightforward since λ appears also in diagrams involving Goldstone bosons.

C₁ coefficients: 2 Loops

 $\sigma(gg \to H)$ and $\Gamma(H \to \gamma\gamma)$ are more challenging.

The identification of the contribution to C_1 is less straightforward since λ appears also in diagrams involving Goldstone bosons.

We used the unitary gauge. We checked the complete result with the literature

C_I coefficients: 2 Loops

 $\sigma(gg \rightarrow H)$ and $\Gamma(H \rightarrow \gamma\gamma)$ are more challenging.

The identification of the contribution to $C_{\rm l}$ is less straightforward since λ appears also in diagrams involving Goldstone bosons.

We used the unitary gauge. We checked the complete result with the literature

The corrections were computed with a Taylor expansion for small momentum.

C_I coefficients: 2 Loops

 $\sigma(gg \rightarrow H)$ and $\Gamma(H \rightarrow \gamma\gamma)$ are more challenging.

The identification of the contribution to C_1 is less straightforward since λ appears also in diagrams involving Goldstone bosons.

We used the unitary gauge. We checked the complete result with the literature

The corrections were computed with a Taylor expansion for small momentum.

Results: O

$C_1^\sigma[\%]$	ggF	VBF	WH	ZH	$t ar{t} H$
8 TeV	0.66	0.65	1.05	1.22	3.78
14 TeV	0.66	0.64	1.03	1.18	3.47

Results: σ

$C_1^{\sigma}[\%]$	ggF	VBF	WH	ZH	$t ar{t} H$
8 TeV	0.66	0.65	1.05	1.22	3.78
14 TeV	0.66	0.64	1.03	1.18	3.47

 $t \bar{t} H$ receives sizeable positive corrections. All the other receive very small

Results: σ

$C_1^\sigma[\%]$	ggF	VBF	WH	ZH	$t ar{t} H$
8 TeV	0.66	0.65	1.05	1.22	3.78
14 TeV	0.66	0.64	1.03	1.18	3.47

 $t \bar{t} H$ receives sizeable positive corrections.

All the other receive very small positive corrections

Here $\delta \sigma_{\lambda}$ is the same of the SM (κ_{λ} =1)

Results: BR

$C_1^\Gamma[\%]$	$\gamma\gamma$	ZZ	WW	$f \bar{f}$	gg
on-shell H	0.49	0.83	0.73	0	0.66

Results: BR

$C_1^\Gamma[\%]$	$\gamma\gamma$	ZZ	WW	$f \bar{f}$	gg
on-shell H	0.49	0.83	0.73	0	0.66

The corrections to BR are smaller than the ones to the Γ .

Results: BR

$C_1^\Gamma[\%]$	$\gamma \gamma$	ZZ	WW	$f \bar{f}$	gg
on-shell H	0.49	0.83	0.73	0	0.66

The corrections to BR are smaller than the ones to the Γ .

However the (positive) δBR are usually larger than the $\delta \sigma$.

$$\delta BR_{\lambda_3}(i) = \frac{(\kappa_{\lambda} - 1)(C_1^{\Gamma}(i) - C_1^{\Gamma_{tot}})}{1 + (\kappa_{\lambda} - 1)C_1^{\Gamma_{tot}}}$$

In other words, in the range close to the SM, the decays are more sensitive to K_{λ} than the production processes.

Results: TBR

All the available Single Higgs processes depend on the single Parameter κ_{λ} . So in principle a global fit can be very powerful in constraining the Higgs trilinear coupling.

$$\chi^{2}(\kappa_{\lambda}) \equiv \sum_{\bar{\mu}_{i}^{f}} \frac{(\mu_{i}^{f}(\kappa_{\lambda}) - \bar{\mu}_{i}^{f})^{2}}{(\Delta(\kappa_{\lambda}))^{2}}$$

$$\chi^{2}(\kappa_{\lambda}) \equiv \sum_{\bar{\mu}_{i}^{f}} \frac{(\mu_{i}^{f}(\kappa_{\lambda}) - \bar{\mu}_{i}^{f})^{2}}{(\Delta(\kappa_{\lambda}))^{2}}$$

In this fit we consider different "scenarios".

Data from arXiv:1606.02266

ATLAS-CMS 8 TeV data combination

$$\chi^{2}(\kappa_{\lambda}) \equiv \sum_{\bar{\mu}_{i}^{f}} \frac{(\mu_{i}^{f}(\kappa_{\lambda}) - \bar{\mu}_{i}^{f})^{2}}{(\Delta(\kappa_{\lambda}))^{2}}$$

In this fit we consider different "scenarios".

Data from arXiv:1606.02266

ATLAS-CMS 8 TeV data combination

For ggF+VBF:
$$\kappa_{\lambda}^{\mathrm{best}} = -0.24$$

$$\kappa_{\lambda}^{1\sigma} = [-5.65, 11.21] \quad \kappa_{\lambda}^{2\sigma} = [-9.43, 16.97]$$

$$\kappa_{\lambda}^{2\sigma} = [-9.43, 16.97]$$

$$\chi^{2}(\kappa_{\lambda}) \equiv \sum_{\bar{\mu}_{i}^{f}} \frac{(\mu_{i}^{f}(\kappa_{\lambda}) - \bar{\mu}_{i}^{f})^{2}}{(\Delta(\kappa_{\lambda}))^{2}}$$

In this fit we consider different "scenarios".

Data from arXiv:1606.02266

ATLAS-CMS 8 TeV data combination

For ggF+VBF:
$$\kappa_{\lambda}^{\mathrm{best}} = -0.24$$

$$\kappa_{\lambda}^{1\sigma} = [-5.65, 11.21] \quad \kappa_{\lambda}^{2\sigma} = [-9.43, 16.97]$$

Requiring p>0.05 we are able to exclude, at more than 2 σ , that a model with an anomalous coupling can explain the data if

$$\kappa_{\lambda} < -14.26$$

Constraints on λ : future

Using the uncertainties presented in arXiv:1312.4974, and assuming that LHC will measure SM, we can estimate the future capabilities of LHC.

Constraints on λ : future

Using the uncertainties presented in arXiv:1312.4974, and assuming that LHC will measure SM, we can estimate the future capabilities of LHC.

For CMS-HL-II 3000 fb-1

$$\kappa_{\lambda}^{1\sigma} = [-0.75, 4.23] \quad \kappa_{\lambda}^{2\sigma} = [-1.99, 6.77]$$

$$\kappa_{\lambda}^{p>0.05} = [-4.10, 9.77]$$

Constraints on λ : future

A more reliable approach is to consider central values compatible with SM.

We produce a collection of pseudo-measurements randomly generated with a gaussian distribution around the SM.

I) best values, 2) I σ region lower limit, 3) I σ region upper limit, 4) 2 σ region lower limit, 5) 2 σ region upper limit, 6) p > 0.05 region lower limit, 7) p > 0.05 region upper limit, 8) I σ region width, 9) 2 σ region width, 10) p > 0.05 region width.

Constraints on λ : future(?!?)

An interesting scenario is the one where the uncertainties are 1% for all the channels

As expected a precise measurement of the $t\bar{t}H$ would lead to a sizeable improvement in the fit.

The Higgs trilinear coupling can be investigated from single Higgs processes.

- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.

- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.
- This approach is model dependent,

- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.
- This approach is model dependent,
 - however the condition for the other couplings to be SM can be lifted.

- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.
- This approach is model dependent,
 - however the condition for the other couplings to be SM can be lifted.
- The biggest role is played by the top-top-Higgs associated production.