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How can we exclude an anomalous trilinear? 
(maybe with the wrong sign)
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• Very small Cross Section.
Heavier final state.
Additional weak coupling.

• At least one Higgs into bottoms.
gg ! HH ⇠ 35 fb (13 TeV)

gg ! H ⇠ 50 pb (13 TeV)

(�1,�17.5] [ [22.5,1)

(�1,�12] [ [17,1)Assuming no change in the other Higgs couplings,  
ATLAS and CMS at 8 TeV exclude the regions

(�1,�1.3] [ [8.7,1)At 3000 fb-1 the exclusion region should be

Higgs Pair Production

arXiv:1509.0467; arXiv:1506.0028; arXiv:1603.0689

ATL-PHYS-PUB-2014-019;  ATL-PHYS-PUB-2015-046
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The trilinear appears at NLO in Single Higgs processes.
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The trilinear appears at NLO in Single Higgs processes.

The modification of the trilinear could be described in a κ-framework

For similar ideas:
M. McCullough Phys. Rev. D90 (2014),  no. 1 015001 
M. Gorbahn and  U. Haisch, arXiv:1607.03773  [hep-ph]; 
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Due to the presence of different Loop structures these  

contributions cannot be captured by a local rescaling.
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Higgs wave function renormalization
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Integration over  
Phase space,

convolution with PDF, 
sum over initial states.
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Amplitudes 
generated by 

FeynArts, computed 
by FormCalc 
interfaced to 

Loop-Tools, checked 
with FeynCalc.

C1 coefficients

⌃NLO = ZH⌃LO(1 + �C1)

Higgs wave function renormalization

Contains QCD corrections Depends on the process

The range of validity of our calculation is |�| . 20
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Integration over  
Phase space,

convolution with PDF, 
sum over initial states.
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σ(gg → H) and Γ(H → γγ)
are more challenging.

C1 coefficients: 2 Loops
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We computed the 
correction with an 

asymptotic 
expansion in large 

top mass.

σ(gg → H) and Γ(H → γγ)
are more challenging.

C1 coefficients: 2 Loops
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The identification of the contribution to C1 is less straightforward since λ appears 
also in diagrams involving Goldstone bosons.
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are more challenging.

Plus Top contributions 
(obtained from gg → H)

The identification of the contribution to C1 is less straightforward since λ appears 
also in diagrams involving Goldstone bosons.

We used the unitary gauge.  We checked the complete result with the literature

The corrections were computed with a Taylor expansion for small momentum.

C1 coefficients: 2 Loops
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Here δσλ is the same of the SM (κλ=1)

Results: σ
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on-shell H 0.49 0.83 0.73 0 0.66

The corrections to BR are smaller 
than the ones to the Γ.

However the (positive) δBR are 
usually larger than the δσ. 

Results: BR

In other words, in the range close to the 
SM, the decays are more sensitive to κλ 

than the production processes.
8



All the available Single Higgs processes 
depend on the single Parameter κλ. 

So in principle a global fit can be very 
powerful in constraining the Higgs 

trilinear coupling.
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Results: σ BR



10

Constraints on λ: present

�2(�) ⌘
X

µ̄f
i

(µf
i (�)� µ̄f

i )
2

(�(�))2



10

Constraints on λ: present

�2(�) ⌘
X

µ̄f
i

(µf
i (�)� µ̄f

i )
2

(�(�))2

In this fit we consider 
different “scenarios”.

Data from arXiv:1606.02266 
ATLAS-CMS 8 TeV data combination
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For ggF+VBF:

Data from arXiv:1606.02266 
ATLAS-CMS 8 TeV data combination

Requiring p>0.05 we are able to 
exclude, at more than 2 σ,

that a model with an anomalous 
coupling can explain the data if

� < �14.26
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LHC will measure SM, we can estimate 
the future capabilities of LHC.  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Constraints on λ: future

A more reliable approach is to consider central values compatible with SM.

We produce a collection of pseudo-measurements randomly generated with a 
gaussian distribution around the SM.
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1) best values, 2) 1σ region lower limit, 3) 1σ region upper limit, 4) 2σ region lower limit, 5) 2σ region upper limit, 6) p > 
0.05 region lower limit, 7) p > 0.05 region upper limit, 8) 1σ region width, 9) 2σ region width, 10) p > 0.05 region width. 
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Constraints on λ: future(?!?)

An interesting scenario is the 
one where the uncertainties 
are 1% for all the channels

As expected a precise measurement 
of the       would lead to a sizeable 

improvement in the fit.   
tt̄H
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Conclusions

The Higgs trilinear coupling can be investigated from single Higgs processes.
Compared to Higgs pair production, the bounds obtained are competitive 
and complementary.
This approach is model dependent,

however the condition for the other couplings to be SM can be lifted.
The biggest role is played by the top-top-Higgs associated production.


