

Strong Gravitational Lensing in the Dark Energy Survey

New Discoveries and Search Techniques

Brian Nord
DES Strong Lensing Working Group
nord@fnal.gov
@iamstarnord

Sneak Preview

- Dark Energy Survey
- Strong Gravitational Lensing as a cosmological probe
- How to discover a lens: recent finds in DES
- New techniques for finding lenses

A Tug of War: Complementary Probes

3/21

A Tug of War: Complementary Probes

Expansion and Structure Growth Multiple Probes, One Experiment

- Weak Lensing: (structure)
 - 200 million galaxy shapes
- **Supernovae:** (expansion)
 - ~3000 well-sampled SNe Ia to z ~1
- Galaxy Clusters: (structure)
 - ~10,000s clusters to z>1
- Large-scale galaxy distribution: (expansion)
 - 300 million galaxies to z > 1
- **Strong Lensing:** (structure and expansion)
 - ~2,000 galaxy-/cluster-scale lenses
- As the size lens populations increases and diversifies, strong lensing has the potential to provide important complementary cosmological constraints.

Predicted DES Constraints:

$$w_0$$
 to ~5% w_a to ~30%

Survey Footprint

- 250 sq. deg.: Science Verification (SV)
- 5000 sq. deg.: Total area

Warped Perspective

Energy tells space how to curve, and space tells energy how to move.

Strong Lens Forecasts for DES

Census of literature

- Variety of techniques and wavelengths, from radio to optical.
- ~1000 strongly lensed systems have been discovered to date.
- Current predictions for DES discovery:
 - ~2000 lenses galaxy- to cluster-scale (Nord+2015, Collett+2015)
 - ~120 lensed quasars and
 < 10 lensed supernovae
 (Oguri & Marshall, 2010)
- Large populations in DES made possible by red-sensitive DECam CCDs, which allow depth of survey.

Famous Lenses from Literature

RXJ1131-123

Cosmic Horseshoe (SDSS J114833.14+193003.2)

Abell 2218

Chicago - Lensed

DES Strong Lensing: Search, Discovery and Science

- Scan data:

 Visual scan, arc-finding,
 catalog search
- 2. Obtain precise distances spectroscopic follow-up
- 3. Science!
 - 1. Model lensing mass
 - 2. Measure cosmological parameters

Candidate and Confirmed Lensing Systems

- SV Search Program (250 deg²⁾
 - Visual scan by 20 people
 - 6 spec confirmed systems (Nord+2015, arXiv:<u>1512.03062</u>)
- Y1 Search Program (1000 deg²⁾
 - Catalog search: photometry, positions
 - Visual scan by 10 people
 - 7 spec confirmed systems (Nord+2016, in prep.)
 - 100's med.-/high-quality candidates (Diehl+2016, in prep.)
- Spectroscopic Follow-up
 - Magellan/IMACS:<10 hours in 2014/2015
 - Gemini South GMOS:
 ~250 hrs over three years

Dark Matter Halo Profile Studies

- Dark Matter halo profiles still have some mysteries due to baryonic effects, unknown nature of dark matter and more.
- A rare, interesting system
 - Found in Y1 Data
 - Profile much shallower than NFW with a huge core, >35 kpc
 - We can measure core because the lens' galaxies don't obscure a central image
 - HST imaging will allow more precise modeling. (Collet+2016, in prep.)

Lenses for Cosmology Time delays

- *The time delay* between different light paths is proportional to the H_0 (Refsdal, 1964)
- The systematics are small quasar samples and mass modeling
- Complementary with CMB and SNe improves dark energy constraints by over 50% (Linder+2016)

- Recent Developments
 - Cepheids & supernovae: 73.24 ± 1.74 km s⁻¹ Mpc⁻¹ (Riess+2016)
 - Time delays: **73 (+5.7 -6.0) km s**⁻¹ **Mpc**⁻¹ (Wong+2016 and the H0liCOW consortium)
 - 2-3σ tension with CMB/Planck measurements

Lensed Quasars

STRong lensing Insights into Dark Energy Survey

STRIDES:

Collaboration with external partners, led by T. Treu

- DES Lensed Quasars Discoveries
 - Agnello+2015, arxiv: 1508.01203
 - Ostrovski+2016, arxiv: 1607.01391
 - Lin+2016, in prep.

- Spectroscopy:6 nights on NTT
- Photometric monitoring:
 La Silla 2.2m: 1.5 hr/night, Oct-Apr.
- AO imaging: SOAR, Keck
- Continued lens-finding and growing the monitoring campaigns will make possible new and competitive cosmological constraints.

Lenses for Cosmology Double-source systems

 Distance is a function Hubble parameter and matter and dark energy densities:

$$D_{ij}(z_L, z_s; \mathsf{H}_0, \Omega_M, \Omega_\Lambda, w)$$

• The ratio of distances, D, provides constraints Ω_M , Ω_Λ , w independent of H_0

$$\mathbf{\Xi}(z_{\text{lens}}, z_1, z_2; \Omega_M, \Omega_\Lambda, w) = \frac{D_{\text{LS}}(z_1)}{D_{\text{S}}(z_1)} \frac{D_{\text{S}}(z_2)}{D_{\text{LS}}(z_2)}$$

- To date, only 1 has been found.
- We expect ~10 in DES (Gavazzi+2008)

Deep Learning and Neural Nets

- Neural Nets are made of neurons (filters) that process input image data.
- Filters (with parameters,
 w_i) activate features in the data, x_i

Image

Example Features

 Important features are learned: multiple layers (deep) of neurons are tested and filter parameters, w, are adjusted

Deep Lensing

- Simulated images
 - LensPop (Collett+2015)
 - reproduces DES characteristics
 - noise levels, exposure time, psf, filters/colors, pixel scale
- Training sets:
 - 10k lenses, 10k non-lenses
 - 32 x 32 pix
- Software:
 - Theano on a laptop
 - 3-layer neural net
- Key goals/questions:
 - Can we remove humans from the search process?
 - Can we pinpoint specific kinds of lenses good for cosmology?

Correctly identified *Nons*

DES Strong Lensing

- DES could find ~2000 lenses 2x as all previously discovered.
- Some of them will be optimal for cosmological measurements:
 - lensed quasars, supernovae
 - multiple-source lensing systems
- Spectroscopic Follow-up and photometric monitoring programs are well-underway.
- Multiple papers and projects are underway with both candidate and confirmed lenses.
- The process of finding objects is challenging.
 Techniques like neural nets may be critical for surveys like DES and LSST.

21 / 28

Extras

Image Searches

- Search Program
 - Visual scan (SV data, 250 sq. deg.)
- •Follow-up
 - Gemini South LLP
 - Magellan

Lenses for Cosmology Dark matter halo profiles

- Combining weak and strong lensing allows measurements of cluster density profiles over a large dynamic range.
- Strong and weak lensing probe inner and outer radii, respectively
- 16 stacked clusters
 - profiles are well fit by canonical NFW model, not by power laws
 - concentration-mass relation shows agreement with LCDM
 - strong lensing is key for these studies.

Spectroscopic Follow-up: Gemini South Telescope

- Large and Long Program
 - 90 hours of telescope time per year for three years
 - 1-4 hours per candidate
 - Many important nuances to Gemini observing

Historical Milestones

- 1979: First lensed system
 - Twin Quasar SBS 0957+561 (Walsh, Carswell, Weyman)
- 1986: First lensed galaxy (arcs)
 - Galaxy Cluster Abell 370
 (Lynds & Petrosian 1986; Soucail et al. 1987)

- 1998: First Einstein Ring
 - Galaxy JVAS B1938+666 (King et al.)
- 2014: First multiply imaged supernovae
 - MACS J1149.6+2223 (Kelly et al., 2014)

How to find and confirm lenses in three easy steps

2. Find relative positions

- Obtain spectra to measure redsfhits and angular diameter distances
 - Patterns in spectral features determine spectroscopic redshift (similar to photo-z)
 - Determine whether the source is farther away than the lens.
 - errors: <1%

Confirming 6 systems took > 10 hours on Gemini 8m telescope. There isn't yet enough telescope time in the world to follow-up and confirm 1000's of lenses.

Cosmological Constraint F

S1

S2

- <u>Double-source system</u>
 - distance is a function Hubble parameter and matter and dark energy densities
 - Dij(H0, Om, Ode)
 - The ratio of angular diameter distances provides constraints Om, Omde in depend of hubble parameter

$$\mathbf{\Xi}(z_{\text{lens}}, z_1, z_2; \Omega_M, \Omega_{\Lambda}, w) = \frac{D_{\text{LS}}(z_1)}{D_{\text{S}}(z_1)} \frac{D_{\text{S}}(z_2)}{D_{\text{LS}}(z_2)}$$

- Dependent on mass reconstruction (geometric simplicity of system)
- Expect O(10) in DES (Gavazzi++, 2008)

50 billion years in the future

Historical Milestones

- 1979: First lensed system
 - Twin Quasar SBS 0957+561 (Walsh, Carswell, Weyman)
- 1986: First lensed galaxy (arcs)
 - Galaxy Cluster Abell 370
 (Lynds & Petrosian 1986; Soucail et al. 1987)

- 1998: First Einstein Ring
 - Galaxy JVAS B1938+666 (King et al.)
- 2014: First multiply imaged supernovae
 - MACS J1149.6+2223 (Kelly et al., 2014)

Lenses for Cosmology

Hubble constant, H₀: proportional to the time delay between different light paths (Refsdal, 1964, Tewes++2012).

Dark energy density, Ω_{Λ} : constrained by ratio of distances in rare multi-source systems (Collett++2015, Linder, 2016).

Dark matter halo profiles reveal the growth of structure and constrain cosmological models (Jullo++2015).

Lenses for Cosmology

Hubble constant, H₀: proportional to the time delay between different light paths (Refsdal, 1964, Tewes++2012).

Dark energy density, Ω_{Λ} : constrained by ratio of distances in rare multi-source systems (Collett++2015, Linder, 2016).

Dark matter halo profiles reveal the growth of structure and constrain cosmological models (Jullo++2015).

