SEARCH FOR HEAVY RESONANCES DECAYING TO TWO HIGGS BOSONS IN FINAL STATES WITH 4 b QUARKS

ANGELO S. SANTOS, for the CMS COLLABORATION
Universidade Federal do ABC (UFABC) — Angelo.Santos@cern.ch

OVERVIEW

Several beyond the standard model studies postulate the existence of warped extra dimensions considering a scalar radion with mass in the TeV scale. In this analysis we search for a spin-0 radion X resonance analyzing a decay chain of $X \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ with boosted Higgs bosons.

BOOSTED TOPOLOGY

The present study considers predictions of warped extra dimensions with radion resonance of masses between 1 and 3 TeV. In a boosted regime, the Higgs bosons (H) in the topology $X \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ have large momentum. The decay product of each H boson is a pair of b quarks, whose hadronization turns out to be jets very close to each other, being identified as a single large jet. Then the final state appears with 2, 3 or 4 jets, depending on how merged is each b-jet pair after the reconstruction of events.

Multijet and $t\bar{t}$ are the dominant backgrounds, but are significantly removed after selecting events based on the flavor of jets (from b-tagging technique), its mass and substructure. The spectrum of a single jet p_T for signal of radion appears in the failing tail of observed and background events.

BACKGROUND MODELING

The background is estimated fitting the dijet mass of observed events using a modified exponential function with normalization N_B considering $100 < m_j < 135$ GeV and slope a based on $60 < m_j < 100$ GeV:

$$dN_{\text{Background}} = N_B \cdot a \cdot e^{-a(m_j-1000 \text{GeV})}$$

Events are categorized according to the “jet-purity”:

- HPHP: two “high-purity” jets
- HLP and LPHP: one “high-purity” jet

RESULTS

No excess of data is found. Exclusion limits at 95% confidence level on the production cross section are computed for m_X between 1.15 and 3.0 TeV, extending significantly beyond 1.5 TeV the reach of previous searches. A radion with scale parameter $\Lambda_X = 1$ TeV decaying into HH is excluded for $1.15 < m_X < 1.55$ TeV for the first time in direct searches.

ACKNOWLEDGEMENTS

This material is based upon work supported in part by the São Paulo Research Foundation (FAPESP) under Grant No. 2013/01907-0. We would like to thank CAPES for the financial support.

REFERENCES