Lepton Flavor Violation in B Decays

Diego Guadagnoli LAPTh Annecy (France)

AUTO DE LA CONTRACTA DE LA CON

LHCb and B factories measured several key $b \rightarrow s$ (and $b \rightarrow c$) modes. Agreement with the SM is less than perfect.

AND DESCRIPTION OF THE OWNER OF T

a second s

LHCb and B factories measured several key $b \rightarrow s$ (and $b \rightarrow c$) modes. Agreement with the SM is less than perfect.

$$\mathbf{O} \quad R_K = \frac{BR(B^+ \rightarrow K^+ \mu \mu)_{[1,6]}}{BR(B^+ \rightarrow K^+ ee)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$

LHCb and B factories measured several key $b \rightarrow s$ (and $b \rightarrow c$) modes. Agreement with the SM is less than perfect.

$$\mathbf{R}_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$

the electron channel would be an obvious culprit (brems + low stats).
 But disagreement is rather in muons

LHCb and B factories measured several key $b \rightarrow s$ (and $b \rightarrow c$) modes. Agreement with the SM is less than perfect.

$$R_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$

the electron channel would be an obvious culprit (brems + low stats). But disagreement is rather in muons

2 $BR(B_s \rightarrow \varphi \mu\mu): >3\sigma$ below SM prediction. Same kinematical region $m_{\mu\mu}^2 \in [1, 6]$ GeV² Found in 1/fb of LHCb data, confirmed by a full Run-I analysis (3/fb)

LHCb and B factories measured several key $b \rightarrow s$ (and $b \rightarrow c$) modes. Agreement with the SM is less than perfect.

D
$$R_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$

the electron channel would be an obvious culprit (brems + low stats). But disagreement is rather in muons

2 $BR(B_s \rightarrow \varphi \mu\mu): >3\sigma$ below SM prediction. Same kinematical region $m_{\mu\mu}^2 \in [1, 6]$ GeV² Found in 1/fb of LHCb data, confirmed by a full Run-I analysis (3/fb)

3 $B \rightarrow K^* \mu \mu$ angular analysis: discrepancy in P'_5 Again same region $m^2_{\mu\mu} \in [1, 6]$ GeV² Compatibility between 1/fb and 3/fb LHCb analyses. Supported also by recent Belle analysis. Significance of the effect is debated.

LHCb and B factories measured several key $b \rightarrow s$ (and $b \rightarrow c$) modes. Agreement with the SM is less than perfect.

D
$$R_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$

the electron channel would be an obvious culprit (brems + low stats). But disagreement is rather in muons

2 $BR(B_s \rightarrow \varphi \mu\mu): >3\sigma$ below SM prediction. Same kinematical region $m_{\mu\mu}^2 \in [1, 6]$ GeV² Found in 1/fb of LHCb data, confirmed by a full Run-I analysis (3/fb)

3 $B \rightarrow K^* \mu \mu$ angular analysis: discrepancy in P'_5 Again same region $m^2_{\mu\mu} \in [1, 6]$ GeV² Compatibility between 1/fb and 3/fb LHCb analyses. Supported also by recent Belle analysis. Significance of the effect is debated.

0 (+ **2** + **3**) =

There seems to be BSM LFNU and the effect is in $\mu\mu$, not ee

D. Guadagnoli, LFV in B decays

- Each of the mentioned effects needs confirmation from Run II to be taken seriously
- Yet, focusing (for the moment) on the $b \rightarrow s$ discrepancies
 - **Q1:** Can we (easily) make theoretical sense of data?
 - **Q2:** What are the most immediate signatures to expect ?

Concerning Q2: most immediate signatures to expect

45¹

Basic observation:

• If R_{κ} is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.

Concerning Q2: most immediate signatures to expect 6......

رور الارام المراجع الم

Basic observation:

If R_{κ} is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level. ٠

In fact:

Consider a new, LFNU interaction above the EWSB scale, e.g. with •

new vector bosons: $\overline{\ell} Z' \ell$ or leptoquarks: $\overline{\ell} \varphi q$

Concerning Q2: most immediate signatures to expect

40......

\$\$1.....

Basic observation:

• If R_{κ} is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.

In fact:

Consider a new, LFNU interaction above the EWSB scale, e.g. with

new vector bosons: $\overline{\ell} Z' \ell$ or leptoquarks: $\overline{\ell} \varphi q$

• In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis. (This basis doesn't yet even exist. We are above the EWSB scale.) **Concerning Q2:** most immediate signatures to expect

Basic observation:

• If R_{κ} is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.

In fact:

Consider a new, LFNU interaction above the EWSB scale, e.g. with

new vector bosons: $\overline{\ell} Z' \ell$ or leptoquarks: $\overline{\ell} \varphi q$

- In what basis are quarks and leptons in the above interaction?
 Generically, it's not the mass eigenbasis.
 - (This basis doesn't yet even exist. We are above the EWSB scale.)
- Rotating q and l to the mass eigenbasis generates LFV interactions.

D. Guadagnoli, LFV in B decays

• Yes we can. Consider the following Hamiltonian

$$H_{\rm SM+NP}(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{\rm em}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]$$

Concerning Q1: can we easily make theoretical sense of these data?
• Yes we can. Consider the following Hamiltonia

$$\begin{aligned} & \int_{SM+NP} (\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4G_{\nu}}{\sqrt{2}} V_{b}^* V_{b} \frac{\alpha_{em}}{4\pi} \left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot \underbrace{C_{0}^{(\mu)}}_{0} \bar{u} \gamma_{\lambda} \mu + \underbrace{C_{0}^{(\mu)}}_{0} \bar{u} \gamma_{\lambda} \gamma_{5} \mu \right] \end{aligned}$$

- Advocating the same $(V A) \times (V A)$ structure also for the corrections to $C_{9,10}^{SM}$ (in the $\mu\mu$ -channel only!) would account for:
 - R_{κ} lower than 1
 - $B \rightarrow K \mu \mu \& B_s \rightarrow \mu \mu$ BR data below predictions
 - the P_5' anomaly in $B \rightarrow K^* \mu \mu$

- Advocating the same (V A) x (V A) structure also for the corrections to C_{9,10}SM (in the μμ-channel only!) would account for:
 - R_{κ} lower than 1
 - $B \rightarrow K \mu \mu \& B_s \rightarrow \mu \mu$ BR data below predictions
 - the P_5' anomaly in $B \rightarrow K^* \mu \mu$

A fully quantitative test requires a global fit.

new physics contributions to the Wilson coefficients. We find that the by far largest decrease in the χ^2 can be obtained either by a negative new physics contribution to C_9 (with $C_9^{\text{NP}} \sim -30\% \times C_9^{\text{SM}}$), or by new physics in the $SU(2)_L$ invariant direction $C_9^{\text{NP}} = -C_{10}^{\text{NP}}$, (with $C_9^{\text{NP}} \sim -12\% \times C_9^{\text{SM}}$). A positive NP contribution to C_{10} alone would also improve the fit, although to a lesser extent. [Altmannshofer, Straub, EPJC '15]

For analogous conclusions, see also [Ghosh, Nardecchia, Renner, JHEP '14]

As we saw before, all $b \rightarrow s$ data • are explained at one stroke if:

- $C_{9}^{(t)} \approx -C_{10}^{(t)}$ (V A structure) $|C_{9,\text{NP}}^{(\mu)}| \gg |C_{9,\text{NP}}^{(e)}|$ (LFNU)

 As we saw before, all b → s data are explained at one stroke if:

- $C_{9}^{(\ell)} \approx -C_{10}^{(\ell)}$ (V A structure) - $|C_{9,NP}^{(\mu)}| \gg |C_{9,NP}^{(e)}|$ (LFNU)
- This pattern can be generated from a purely 3rd-generation interaction of the kind
 - $H_{\rm NP} = G \bar{b}'_{L} \gamma^{\lambda} b'_{L} \bar{\tau}'_{L} \gamma_{\lambda} \tau'_{L}$ with $G = 1/\Lambda_{\rm NP}^{2} \ll G_{F}$ expected e.g. in partial-compositeness frameworks

 As we saw before, all b → s data are explained at one stroke if:

- $C_{9}^{(\ell)} \approx -C_{10}^{(\ell)}$ (V A structure) - $|C_{9,NP}^{(\mu)}| \gg |C_{9,NP}^{(e)}|$ (LFNU)
- This pattern can be generated from a purely 3rd-generation interaction of the kind
 - $H_{\rm NP} = G \, \bar{b}'_L \gamma^{\lambda} b'_L \, \bar{\tau}'_L \gamma_{\lambda} \tau'_L$ with $G = 1/\Lambda_{\rm NP}^2 \ll G_F$ expected e.g. in
 partial-compositeness
 frameworks
- Note: primed fields
 - Fields are in the "gauge" basis (= primed)

 As we saw before, all b → s data are explained at one stroke if:

- $C_{9}^{(\ell)} \approx -C_{10}^{(\ell)}$ (V A structure) - $|C_{9,NP}^{(\mu)}| \gg |C_{9,NP}^{(e)}|$ (LFNU)
- This pattern can be generated from a purely 3rd-generation interaction of the kind
 - $H_{\rm NP} = G \bar{b}'_{L} \gamma^{\lambda} b'_{L} \bar{\tau}'_{L} \gamma_{\lambda} \tau'_{L}$ with $G = 1/\Lambda_{\rm NP}^{2} \ll G_{F}$ expected e.g. in partial-compositeness frameworks

5

- Note: primed fields
 - Fields are in the "gauge" basis (= primed)
 - They need to be rotated to the mass eigenbasis

$$mass \\ b'_{L} \equiv (d'_{L})_{3} = (U_{L}^{d})_{3i} (d_{L})_{i} \\ \tau'_{L} \equiv (\ell'_{L})_{3} = (U_{L}^{\ell})_{3i} (\ell'_{L})_{i}$$

 As we saw before, all b → s data are explained at one stroke if:

- $C_{9}^{(t)} \approx -C_{10}^{(t)}$ (V A structure) - $|C_{9,NP}^{(\mu)}| \gg |C_{9,NP}^{(e)}|$ (LFNU)
- This pattern can be generated from a purely 3rd-generation interaction of the kind
 - $H_{\rm NP} = G \bar{b}'_L \gamma^{\lambda} b'_L \bar{\tau}'_L \gamma_{\lambda} \tau'_L$ $with \ G = 1/\Lambda_{\rm NP}^2 \ll G_F$ expected e.g. in partial-compositeness frameworks
- Note: primed fields

• So, in the above setup

$$R_{K} \approx \frac{|C_{9}^{(\mu)}|^{2} + |C_{10}^{(\mu)}|^{2}}{|C_{9}^{(e)}|^{2} + |C_{10}^{(e)}|^{2}} \simeq \frac{2|C_{10}^{\text{SM}} + \delta C_{10}|^{2}}{2|C_{10}^{\text{SM}}|^{2}}$$

D. Guadagnoli, LFV in B decays

D. Guadagnoli, LFV in B decays

More on LFV model signatures

- Bottom line: we can reasonably expect one of the $B \rightarrow K \ell \ell'$ decays in the 10⁻⁸ ballpark and one of the $B \rightarrow \ell \ell'$ decays in the 10⁻¹⁰ one, namely ~ 5% of $BR(B_s \rightarrow \mu\mu)$
- The most suppressed of the above modes is most likely $B_s \rightarrow \mu e$. . (The lepton combination is the farthest from the 3^{rd} generation, and it's chirally suppressed.)
- What about $B_s \rightarrow \mu e \gamma$? •
 - γ = "hard" photon

(hard = outside of the di-lepton Invariant-mass signal window)

Chiral-suppression factor, of $O(m_{\mu}^{}/m_{Bs}^{})^{2}$ replaced by $\alpha_{em}^{}/\pi$ suppression

DG, Melikhov, Reboud, PLB '16

D. Guadagnoli, LFV in B decays

D. Guadagnoli, LFV in B decays

- In flavor physics there are by now several persistent discrepancies with respect to the SM.
 Their most convincing aspects are the following:
 - **Experiments:** Results are consistent between LHCb and B factories.

- In flavor physics there are by now several persistent discrepancies with respect to the SM.
 Their most convincing aspects are the following:
 - *Experiments:* Results are consistent between LHCb and B factories.
 - **Data:** Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.

- In flavor physics there are by now several persistent discrepancies with respect to the SM.
 Their most convincing aspects are the following:
 - **Experiments:** Results are consistent between LHCb and B factories.
 - **Data:** Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
 - Data vs. theory: Discrepancies go in a consistent direction.
 A BSM explanation is already possible within an EFT approach.

- In flavor physics there are by now several persistent discrepancies with respect to the SM.
 Their most convincing aspects are the following:
 - **Experiments:** Results are consistent between LHCb and B factories.
 - **Data:** Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
 - Data vs. theory: Discrepancies go in a consistent direction.
 A BSM explanation is already possible within an EFT approach.
- Early to draw conclusions. But Run II will provide a definite answer

- In flavor physics there are by now several persistent discrepancies with respect to the SM.
 Their most convincing aspects are the following:
 - **Experiments:** Results are consistent between LHCb and B factories.
 - **Data:** Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
 - Data vs. theory: Discrepancies go in a consistent direction.
 A BSM explanation is already possible within an EFT approach.
- Early to draw conclusions. But Run II will provide a definite answer
- Timely to propose further tests. One promising direction is that of LFV. Plenty of channels, many of which largely untested.