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➊ (+ ➋ + ➌) ⇒ There seems to be BSM LFNU

and the effect is in µµ, not ee
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 Each of the mentioned effects needs confirmation from Run II 
to be taken seriously

Q1:   Can we (easily) make theoretical sense of data?

Q2:   What are the most immediate signatures to expect ?

 Yet, focusing (for the moment) on the b → s discrepancies
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If R
K
 is signaling LFNU at a non-SM level,  we may also expect  LFV at a non-SM level.

In fact:

 Consider a new, LFNU interaction above the EWSB scale, e.g. with

ℓ Z'ℓnew vector bosons: ℓ φ  qor            leptoquarks:

 In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis. 
(This basis doesn't yet even exist. We are above the EWSB scale.)



 Rotating q and ℓ to the mass eigenbasis generates LFV interactions.
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 Advocating the same (V –  A) x (V – A) structure also for the corrections to C
9,10

SM 

(in the µµ-channel only!) would account for:

R
K
 lower than 1

B → K µµ  & B
s
 → µµ    BR data below predictions

 A fully quantitative test requires a global fit.

 [Altmannshofer, Straub, EPJC '15]
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partial-compositeness 
frameworks 

Fields are in the “gauge” basis (= primed)

They need to be rotated to the mass eigenbasis

Note: primed fields

This rotation induces  LFNU and LFV effects

b 'L ≡ (d ' L)3 = (U L
d )3 i (d L)i
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0.77±0.20 =
BR (Bs→μμ)exp
BR (Bs→μμ)SM

=
BR (B s→μμ)SM+NP
BR(B s→μμ)SM

=
|C10

SM+δC10|
2

|C10
SM|2

implying (within our model) the correlations

BR (Bs→μμ)exp
BR (Bs→μμ)SM

≃ RK ≃
BR(B+→K+μμ)exp
BR(B+→K+μμ)SM

Another good reason 
to pursue accuracy in

the B
s  → µµ measurement

See also
 Hiller, Schmaltz, PRD 14
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BR(B
s
 → μ e γ)

BR(B
s
 → μ e)

γ = “hard” photon

(hard = outside of the di-lepton 
Invariant-mass signal window)

Enhancement by ~ 30%

Inclusion of the radiative mode more-than-
doubles statistics of the non-radiative
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Conclusions

 In flavor physics there are by now several persistent discrepancies with respect to the SM.

Data vs. theory: Discrepancies go in a consistent direction.
                            A BSM explanation is already possible within an EFT approach.

Experiments: Results are consistent between LHCb and B factories.

 Early to draw conclusions. But Run II will provide a definite answer

 Timely to propose further tests.  One promising direction is that of LFV. 
Plenty of channels, many of which largely untested.

Their most convincing aspects are the following:

Data: Deviations concern two independent sets of data:  b → s  and  b → c  decays.
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