Neutrino Oscillation Physics Sensitivity of Hyper-Kamiokande

ICHEP - Chicago 2016

Michel Gonin - On behalf of the @HyperKamiokande collaboration

Laboratoire LEPRINCE-RINGUET École polytechnique - IN2P3/CNRS

HK Proto Collaboration was formed on January 2015

- MOU between Tokyo Univ ICRR and KEK IPNS
- On going reviews by an International HK Advisory Committee
- International groups formed and developing
- New proposal submitted in March to the Science Council of Japan
- Reviewed by the KEK-PIP committee top priority

A new design for HK submitted last February

EACH TANK

- 260 Kton total
- 10 x SK fiducial volume
- Very good PMT coverage (40%)
- 60 m height x 74 m diameter

Sensitivity goals are maintained for HK oscillations physics

The Hyper-Kamiokande project for Oscillation Physics

<u>Very large physics program</u> CPV, precision measurement for mixing parameters and mass hierarchy, in addition to proton decay (world leading researches) and astrophysics neutrinos

The experiment "T2HK" will be an off-axis long baseline experiment L = 295 km @ 2.5 degrees (similar to T2K)

- Well known state-of-the-art water Cherenkov technique
- Reasonable and predictable total cost
- Reasonable timescale for approval and construction
- Will greatly benefit from SK and T2K expertise and momenta
- Approved and foreseen upgrades of the JPARC muon-neutrino beam

T2K data prefers maximal θ_{23} mixing, CPV of $-\pi/2$ and normal hirearchy

Precise measurement of electron-neutrino appearance will be performed in T2HK

Continuous beam upgrade @ J-PARC

H.A. Tanaka et al., Neutrino2016

observed vs. expected number of v_e and v_e candidates

		EXPECTED (NH, sin ² O ₂₃ =0.528)			
	OBS.	δ _{CP} =-π/2	δ _{CP} =0	δ _{CP} =+π/2	δ _{СР} =π
Ve	32	27.0	22.7	18.5	22.7
\overline{v}_e	4	6.0	6.9	7.7	6.8

- Toy MC run to assess probability of outcome given a set of "true" parameters
- Below: fraction where δ_{CP} =0 excluded at 90% or 2 σ CL for NH, δ_{CP} = - π /2, 0

	TRUE PARAMETERS		
	δ _{CP} =-π/2, NH	δ _{CP} =0, NH	
90%	0.187	0.102	
2 σ	0.089	0.047	

"J-PARC upgrade for HK is the highest priority"

KEK - PIP

Hyper-Kamiokande systematic errors

Estimations and simulations will be based on T2K and SK studies with real data

v-mode v_e candidates $\sqrt{2}$

Source of uncertainty

Flux+XSec+SKDet+FSI+SI (pre-fit)

Oscillations

All

All (pre-fit)

 $\delta N_{SK}/N_{SK}$

3.48%
2.28%
2.63%
3.67%
3.90%
0.05%
0.15%
1.47%
2.61%
4.26%
5.21%
2.90%
4.17%
(5.45%)

	candidates	TOP
v -mode v_e	candidates	

Source of uncertainty	$\delta N_{SK}/N_{SK}$
SKDet+FSI+SI	3.95%
SKDet only	3.11%
FSI+SI only	2.43%
Flux	3.84%
2p-2h (corr)	3.04%
2p-2h bar (corr)	2.36%
NC other (uncorr)	0.33%
NC 1gamma (uncorr)	2.95%
XSec nue/numu (uncorr)	1.46%
XSec Tot (corr)	4.46%
XSec Tot	5.55%
Flux+XSec (ND280 constrained)	3.20%
Flux+XSec	4.60%
Flux+XSec+SKDet+FSI+SI	(6.28%)
Flux+XSec+SKDet+FSI+SI (pre-fit)	13.5%
Oscillations	4.00%
All	(7.38%)
All (pre-fit)	14.1%

<u>Goal</u>

12.1%

4.20%

6.91%

Reduction from ~ 6-7% in T2K

to ~ 3-4% in T2HK for the expected number of events. Beam flux, XSections, HK Det, New Near Detectors.

The HK Detector

New technologies and on going studies for PMT

Significant improvement of single photon efficiency Better time and charge resolution (x2)

Possible mixed technologies in HK for PMT

- Worldwide studies for new photo sensors detectors (JUNO, IceCube, KM3NET, ...)
- Foreseen collaborative efforts of HK with other experiments

Beam flux and Xsections

The Near Detector ND280 upgrades for T2K-II and T2HK

WAGASCI

- The new ND280 will continue to perform for T2HK
- Same narrow band beam centered at 600 MeV
- Cross section measurements in WATER
- Investigation of the nuclear effects (FSI,....)

Beam flux and Xsections

Proposals for New Intermediate Water Cherenkov detectors at 1.2 Km

· NUPRISM.

Off-axis angle spanning orientation. Some new and original approach to extrapolate neutrino events in HK.

TITUS

Gd loading, magnetized muon range detector. Good Near/Far flux ratios for prediction in HK

TITUS

arXiv:1606.08114

Physics performance for oscillation studies

- 10 years of running
 1.3 MW for JPARC proton beam
 1 tank then 2 tanks
 ~ 40% PMT coverage in HK
 3-4% systematic uncertainties

Electron-neutrino appearance

δ=0	Signal $(v_{\mu} \rightarrow v_e \text{ CC})$	Wrong sign appearance	$ egin{array}{c} u_{\mu} , \overline{ u}_{\mu} \\ CC \end{array}$	Beam v_e, \bar{v}_e contamination	NC
V beam	2300	21	10	362	188
$\bar{\nu}$	1656	289	6	444	274
beam					

Physics performance for oscillation studies

- 10 years of running
 1.3 MW for JPARC proton beam
 1 tank then 2 tanks
 ~ 40% PMT coverage in HK
 3-4% systematic uncertainties

Electron-neutrino appearance

Possibility of using shape information in energy to distinguish different values for δ (CP)

Physics performance for CPV studies

- Exclusion of $\sin \delta_{CP} = 0$
 - 8σ for $\delta=-90^{\circ}$
 - 80% coverage of δ parameter space for CPV discovery w/ >3σ
- δ_{CP} precision measurement
 - 20° for δ=-90°
 - 7° for $\delta=0^{\circ}$

Physics performance for oscillation parameter measurements

Normal mass hierarchy

$$\sin^2\theta_{23} = 0.50$$
, $\Delta(\sin^2\theta_{23}) \sim 0.015$

$$\sin^2\theta_{23} = 0.45$$
, $\Delta(\sin^2\theta_{23}) \sim 0.006$

Physics performance for oscillation parameter measurements

JPARC Beam + Atmospheric neutrinos

M.H. determination $\sim 5\sigma$. Good performance for octant determination

HK and T2HK Schedule

- The 2nd tank starts operation 7 years after the first one
- Schedule for ND280 upgrades and Intermediate Detectors approval and construction not included
- · Based on HK proposal approved before end of 2017

Korean option for the second tank?

Just started to study sensitivity and the physics case

Summary

- Great potential for large CP violation discovery in the lepton sector
- Precision improved significantly for mixing parameter measurements.
 First test of the unitarity of the PMNS matrix?

	δ _{CP} precision (0°,90°)	7°-21°
JPARC muon-neutrino off axis beam	CPV coverage (3/5σ)	78%/62%
orr axis beam	sin ² θ ₂₃ error (for 0.5)	±0.015
JPARC neutrino beam	MH determination (sin²θ23=0.40)	>5.3σ
Atmospheric neutrinos	Octant (sin ² 023=0.45)	5.8σ

- New optimized tank design. Staging approach.
- New proposal submitted last March to the Science Council of Japan
- Upgrades of the ND280 detectors for T2K-II. Proposal for new I.D.
- HK is based on existing technologies for neutrino detection but with the use of new generation of photo sensors