

Status and plans of the Compact Linear Collider Study

- Introduction
- CLIC status
- 380 GeV collider optimisation
- R&D highlights
- Conclusions and outlook

Steffen Doebert

CERN

On behalf of the CLIC Accelerator Collaboration

Thanks to all colleagues for their contributions

ICHEP 2016, Chicago

New CLIC layout 3 TeV

CLIC physics context

Energy-frontier capability for electron-positron collisions,

> for precision exploration of potential new physics that may emerge from LHC

Timeline

2013-19 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors

2019-20 Decisions O Detector collaboration On the basis of LHC data and Project Plans (for CLIC and other potential projects as FCC), take decisions about next project(s) at the Energy Frontier.

5 year Preparation Phase Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Construction Phase

Stage 1 construction of CLIC, in parallel with detector construction.

Preparation for implementation of further

Accelerator collaboration with ~50 institutes Detector collaboration operative with ~27

| 🎽 📇 🚍 👬 🚺 🚍 🛄 🗷

📕 🔜 💌 💶 🚼 🖬 🖸 😹 💳 💻

Institutes

Accelerator collaboration Accelerator + Detector collaboration

- Post CDR Development phase
- Parameter optimization in particular first stage at 380 GeV and subsequent staging
- **Optimize Cost, Power and schedule**
- Key-technical developments including preparations for industrialization
- Performance verifications in test facilities, CTF3, FACET, ATF
- Promoting CLIC technology for FEL's and medical applications

Power&Cost optimisation

- **Development of very efficient power source**
- Development of adjustable permanent magnets
- Parameter optimization, beam quality
- Running scenarios
- Alternative designs
- Energy recovery

Power and Energy

P_AC versus E_CM

Figure 24: Estimated yearly energy consumption of CLIC [TWh/year].

380 GeV stage optimization

D. Schulte, CLIC Rebaselining Progress, February 2014

Parameter model

- Does not contain BDS and experiments
- Main beam injector power scaled with charge per train

Example output (380 GeV)

Cheapest machine is close to lowest power consumption => small potential for trade-off

Current rebaselined parameters

Table 9: Parameters for the CLIC energy stages. The power consumptions for the 1.5 and 3 TeV stages are from the CDR; depending on the details of the upgrade they can change at the percent level.

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	920/20	660/20	660/20
Normalised emittance (at IP)	$\varepsilon_x/\varepsilon_y$	nm	950/30	—	
Estimated power consumption	$P_{\rm wall}$	MW	252	364	589

"Updated Baseline for a staged Compact linear Collider", to be published

New CLIC layout 380 GeV

Drive beam quadrupoles (40 MW @ 3 TeV)

High energy quad – Gradient very high Low energy quad – Very large dynamic range

Permanent Magnet solution

High energy quad – Gradient very high Low energy quad – Very large dynamic range

PM engineering concept

CTF3: 2016

LINEAR COLLIDER COLLABORATION CLIC two beam module

Module mechanical characterization test stand:

active alignment (10 um), fiducialisation + stabilization (PACMAN)

CLIC two beam module

Very high efficiency power sources

Multi beam klystrons 1 GHz, 20 MW, 150 ms, 50 Hz, > 70% efficiency

<u>Thales Electron Devices:</u> 10 beam multi beam klystrons 77 % efficiency calculated <u>Toshiba:</u>

6 beam multi beam klystrons 75 % efficiency calculated

Delivery and test in summer 2016

LINEAR COLLIDER COLLABORATION

CLIC accelerating structure

11.994 GHz X-band 100 MV/m Input power ≈50 MW Pulse length ≈200 ns Repetition rate 50 Hz

Increasing testing capabilities for x-band at CERN, 3 klystron based test stands available

Beam tuning at FACET (SLAC)

- Preparation phase 2016-19 is well defined and in line with European Strategy
- □ Prepared to align with LHC physics outcomes as results become available
- Aim to provide optimized staged approach up to 3 TeV with costs and power not excessive compared with LHC, with an initial 380 GeV stage (Watch out for" "Updated Baseline for a staged Compact linear Collider", tbp)
- Excellent progress key technology developments:
 X-band structures, high efficiency power source, two beam modules, drive beam components, permanent magnets, alignment
- Successful performance verifications, drive beam (CTF3), main beam emittance conservation (FACET) and final focus studies (ATF)
- □ Healthy collaborations for CLIC accelerator studies

Sefected collaborations on applications of X-band and high-gradient

- XbFEL H2020 design study to be resubmitted in 2017.
- XBox3-B to Australian light source, Monash University proposal.
- X-band deflector and accelerating structure testing for X-band option for XFEL at SINAP.
- X-band linearizer system with Fermi@Trieste and SwissFEL

X-band Deflector

SLAC-R-985 KEK Report 2012 PSI-12-01 JAI-2012-001 CERN-2012-007 12 October 2012 ANL-HEP-TR-12-01 CERN-2012-003 DESY 12-008 KEK Report 2011-7 14 February 2012

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

A MULTI-TEV LINEAR COLLIDER BASED ON CLIC TECHNOLOGY

CLIC CONCEPTUAL DESIGN REPORT

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PHYSICS AND DETECTORS AT CLIC

CLIC CONCEPTUAL DESIGN REPORT

CLIC detector concept

ILC concepts adapted to a single detector for CLIC:

- Highly-granular, deep calorimeter
- 4T solenoid
- Low-mass Si tracking system
- Precision vertexing close to IP
- 10ns time-stamping

CLIC energy staging (CDR)

Energy-staging exercise for updated base line

