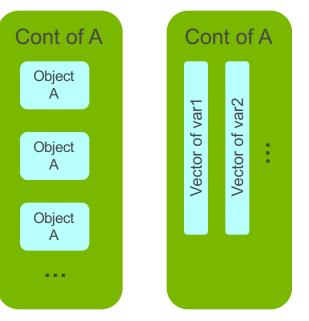


FIRST EXPERIENCE WITH THE NEW ATLAS ANALYSIS MODEL

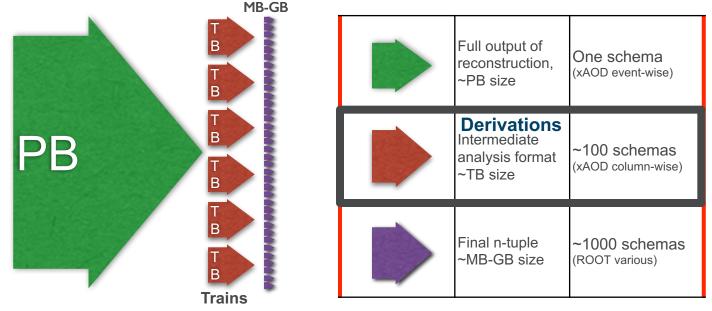
JACK CRANSHAW Argonne National Laboratory On behalf of the ATLAS Collaboration

ICHEP2016, Chicago, Illinois August 4, 2016

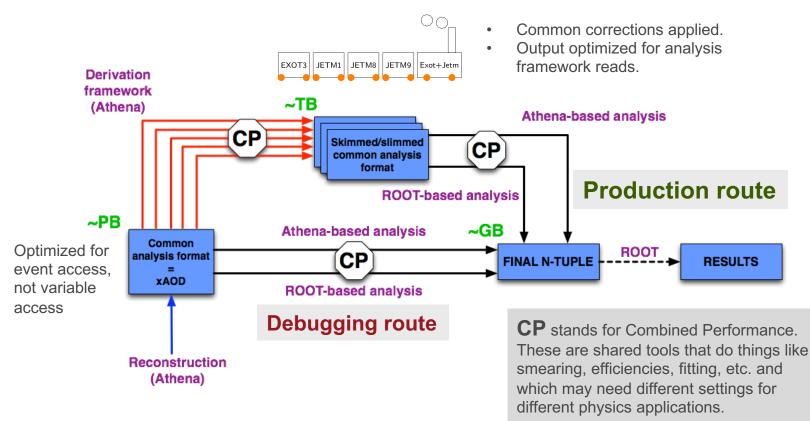
IMPROVING THE RUN 1 MODEL


- The Run 1 ATLAS data format was different for analysis and reconstruction.
 - Storage usage was sub-optimal as some content was duplicated in different formats.
 - Format conversions meant operational inefficiencies.
 - Multiple formats made
 - tool maintenance a problem as there were either multiple tools for efficiency corrections, etc. or the tools had to have different code for different inputs.
 - consistency checks more complicated.
- Clear opportunity for improvement in Run 2.
 - We developed a more flexible data format (xAOD) that can be configured in ways which work for both analysis and reconstruction.
 - We developed a system to produce and catalog samples that are prefiltered for analysis using tools which physicists can run themselves and feed any developments directly back up the processing chain.

RUN 2 ANALYSIS OBJECT DATA (AOD) xAOD Format

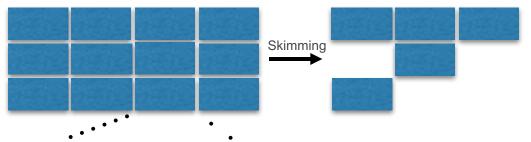

- In Run 1 the AOD format had two aspects which made it unpopular with analyzers but popular with reconstruction.
 - It was fast to retrieve groups of events.
 - It wrote in a format *optimized for space* which required object reconstitution for some objects.
- For analysis what was wanted was different.
 - Fast retrieval of individual variables.
 - Direct usability in ROOT with no externals.
- Using an object called an auxiliary store, we are able to write data in *either format* simply by changing the ROOT settings. Some of the advantages of Run 1 were compromised, but the advantage of a single format outweighs them. (see poster on Saturday)

Auxiliary Stores

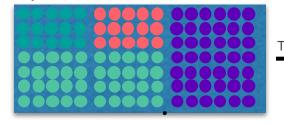

DATA REDUCTION: A FEATURE COMMON TO MOST PHYSICS ANALYSES

- · Centrally produced for both data and Monte Carlo.
- These formats tend to be specific to a single analysis or group of analyses.
 - One can think of these as physics group 'software experiments' that can be repeated monthly as necessary.
- Calibrations and common object selections are often applied as derivations are made.
- They generally need to contain all variables needed for calculating systematics.
- Stringent limits on size and close coordination with physics groups who share resources.
 - ~100 derivations are grouped into of order 20 trains which run 2-10 derivations (carriages).

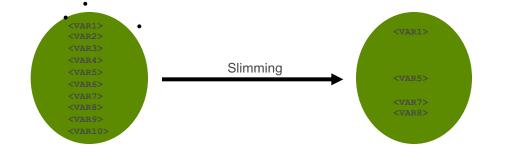
THE RUN 2 ANALYSIS MODEL FOR ATLAS



USER INTERFACE

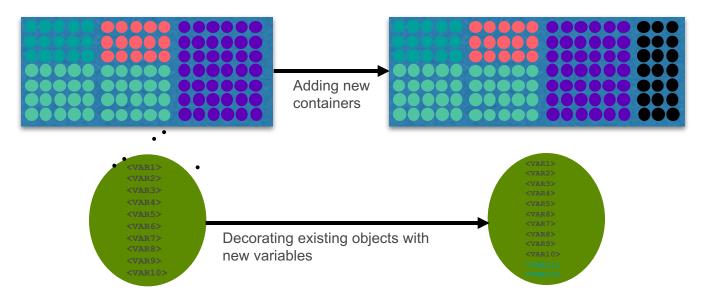

- Derivation developers (physicists) use Athena but interact through interfaces provided by the derivation framework.
 - Athena advantages
 - Full access to Athena I/O infrastructure for streaming and configuration.
 - Full access to reconstruction algorithms when needed.
 - Derivation framework features
 - Interfaces for users to implement tools for skimming, thinning, and augmenting their data. (next slides)
 - A text-based event/object selector to minimize user-developed C++.
 - List of variables needed by the CP tools, allowing 'smart' slimming.
 - Monitoring of multi-carriage/train performance.

DATA REDUCTION OPERATIONS (100% -> 1%)

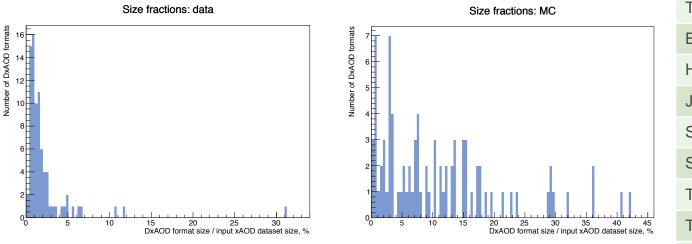


Skimming: removal of whole events based on pre-set criteria

Thinning: removal of whole objects within events based on pre-set criteria



Slimming: removal of variables within objects uniformly across events


AUGMENTATION OPERATIONS

- Addition of new information (augmentation) is typically done in two ways:
 - Adding new reconstructed object containers: typically jets made with a modified algorithm.
 - Decorating existing objects with extra variables: typically the results of object selection by combined performance tools (e.g. "this is a good muon")
- Augmentation can be shared across a train, saving CPU

IMPLEMENTED DERIVATIONS

- Can scale to more derivations simply by defining new carriages and new trains.
- Users can generally run over an entire derived dataset in one day.
- Derivations limited to 1% of AOD/carriage, 4% of AOD/physics group.

Group	Number of Carriages
B Physics	2
Egamma	8
Flav. Tag	4
Inner Det.	1
Muon	5
Tau	2
Exotics	18
Higgs	20
Jet	11
SM	5
SUSY	13
Tile	1
Тор	4
Total	94
	Argonne

OVERLAPS

- We monitor both content and event-wise overlaps of the various derivations when data or derivations change.
 - Overlap is calculated as intersection/non-intersecting.
 - Most of the time there is not a problem.
 - Below is a recent figure for overlaps for the 14 derivations which had > 70% overlap with at least 1 other derivation.
 - When large event overlaps are detected, they are investigated, but they must also have large variable overlap and have similar development schedules.

	ΕΧΟΤ 0														
ΕΧΟΤΟ	502891 (100%)	EXOT4	_												Example
EXOT4	427343 (3.99%)	10647773 (100%)	EXOT10)											Example:
EXOT10	128808 (13.63%)	170178 (1.54%)	570837 (100%)	HIGG1D	1										
HIGG1D	1 (14.94%)	226424 (2.02%)	570774 (70.95%)	804424 (100%)	HIGG5D	1									1000
HIGG5D	18459 (0.2%)	1371482 (7.61%)	6108 (0.07%)	6982 (0.07%)	8740180 (100%)	JETM1	_								
JETM1	2938 (0.11%)	225187 (1.79%)	4599 (0.17%)	4624 (0.16%)	159209 (1.48%)	2145394 (100%)	JETM3	_							250
JETM3	386241 (73.2%)	357159 (3.34%)	94981 (10.71%)	121017 (11.06%)	13162 (0.14%)	1013 (0.04%)	411007 (100%)	JETM8	_						
JETM8	2930 (0.14%)	212144 (1.75%)	4588 (0.21%)	4604 (0.19%)	158577 (1.55%)	1660093 (77.38%)	1007 (0.05%)	1660093 (100%)	JETM9	_					1000
JETM9	2938 (0.11%)	225187 (1.79%)	4599 (0.17%)	4624 (0.16%)	159209 (1.48%)	2145394 (100%)	1013 (0.04%)	1660093 (77.38%)	2145394 (100%)	JETM11	L				
JETM11	488068 (3.98%)	8371354 (57.67%)	179864 (1.42%)	244306 (1.91%)	760522 (3.76%)	141477 (0.99%)	410983 (3.36%)	136318 (0.99%)	141477 (0.99%)	12238918 (100%)	STDM4				$100 \cdot \frac{250}{2000 - 250} = 14\%$
STDM4	491629 (3.84%)	10457192 (80.49%)	195011 (1.48%)	263457 (1.97%)	1384221 (6.87%)	231596 (1.57%)	411007 (3.21%)	217481 (1.53%)	231596 (1.57%)	10367259 (70.65%)	12801582 (100%)	SUSY5	_		$100 \cdot \frac{14}{2000-250} - 14/0$
SUSY5	500891 (2.92%)	8948443 (47.46%)	282859 (1.62%)	390570 (2.22%)	1515843 (6.22%)	353323 (1.86%)	411007 (2.4%)	328423 (1.78%)	353323 (1.86%)	12238918 (71.34%)	10936535 (57.5%)	17155997 (100%)	SUSY6		
SUSY6	389660 (3.23%)	4024321 (21.65%)	116448 (0.94%)	147819 (1.17%)	8724403 (72.82%)	160646 (1.15%)	369639 (3.08%)	159825 (1.19%)	160646 (1.15%)	3951791 (19.51%)	4561559 (22.58%)	4708007 (19.29%)	11964696 (100%)	SUSY8	
SUSY8	263590 (2.04%)	4383318 (23.13%)	6065 (0.05%)	6995 (0.05%)	8724282 (68.68%)	166070 (1.13%)	265958 (2.07%)	165262 (1.17%)	166070 (1.13%)	4389894 (21.38%)	5119163 (25.13%)	5180025 (21%)	10489639 (74.07%)	12687666 (100%)	
		_		_											
	100%	> 90%	> 80%	> 70%	> 60%	> 50%	> 40%	> 30%	> 20%	> 10%	> 0.01%	> 0%	== 0		

MANAGING THE SOFTWARE

Reconstruction (AtlasProduction)

- Releases used in Tier0 and on grid for reconstruction.
- Releases cut roughly *twice a year*.

Derivations (AtlasDerivation)

- Based on a stable AtlasProduction release.
- Extended with derivation packages and some updates which would be disruptive to include in a current AtlasProduction release.
- Releases cut roughly *monthly*.

Physics (AthAnalysisBase)

- Based on a stable AtlasProduction release, Athena usable.
- Slimmed down release with many packages used for reconstruction omitted, e.g. RAW data reading.
- Releases roughly <u>every two weeks</u>.

Physics (AnalysisBase)

- Like AthAnalysisBase, but with the reconstruction framework (athena) also dropped.

Both Athena and ROOT analyses read at kHz event rates.

CONCLUSION

- The Run 2 ATLAS analysis model has been a success and has proven more scalable than the Run 1 version.
 - We are able to run of order 100 trains.
 - Trains and carriages have been rearranged as well, which is possible because of nightly train testing.
 - Weekly coordination meetings provide regular feedback from physics groups. Well attended and short. Production of both data and monte carlo derivations have worked well.
 - Physics groups have successfully managed their own derivation sizes to stay within the resource limits.
 - The release schedule has been maintained.
 - There have been a drop in the number of cases of people trying to access the primary AOD directly. (discouraged by grid management as well).
 - The derivation framework has placed no serious constraints on development of physics analysis frameworks.
- It is foreseen that this system will work successfully for the rest of Run 2.

