Exploring jet sub-structure in Pb-Pb and pp collisions with jet shapes in ALICE

Davide Caffarri (CERN), for the ALICE Collaboration
High-p_T and virtuality partons are produced in initial hard scatterings:
- virtuality evolution through parton shower,
- hadronisation at Λ_{QCD} scale.
Introduction: Jets in hadron collisions

- High-p_T and virtuality partons are produced in initial hard scatterings:
 - virtuality evolution through parton shower,
 - hadronisation at Λ_{QCD} scale.

- No unambiguous definition of a jet:
 - “collimated bunch of hadrons”
 - experimental access to quarks and gluons
Introduction: Jets in hadron collisions

- High-p_T and virtuality partons are produced in initial hard scatterings:
 - virtuality evolution through parton shower,
 - hadronisation at Λ_{QCD} scale.

- No unambiguous definition of a jet:
 - “collimated bunch of hadrons”
 - experimental access to quarks and gluons

- In pp collisions:
 - calculable probes using pQCD,
 - allow to study hadronisation and underlying event effects.
Introduction: Jets in hadron collisions

- High-p_T and virtuality partons are produced in initial hard scatterings:
 - virtuality evolution through parton shower,
 - hadronisation at Λ_{QCD} scale.
Introduction: Jets in heavy-ion collisions

- High-\(p_T \) and virtuality partons are produced in initial hard scatterings:
 - virtuality evolution through parton shower,
 - hadronisation at \(\Lambda_{QCD} \) scale.

- **Hard partons** traverse the QGP and **lose energy** while passing through it: “Gluon bremsstrahlung effect”
High-p_T and virtuality partons are produced in initial hard scatterings:
- virtuality evolution through parton shower,
- hadronisation at Λ_{QCD} scale.

Hard partons traverse the QGP and lose energy while passing through it: “Gluon-bremsstrahlung effect”

Via the **parton interactions with the medium**, jets can be used to:
- study possible **modified fragmentation** with respect to the “vacuum” case (pp collisions),
- probe jet and medium properties.
Jet reconstruction in ALICE

$|\eta| < 0.9$, $0 < \phi < 2\pi$

ITS: Inner Tracking System (silicon)

TPC: Time Projection Chamber

Track $p_T > 150$ MeV/c

Charged constituent jets (jet^{ch})
Jet reconstruction in ALICE

EMCAL: Pb scintillator sampling calorimeter
$|\eta| < 0.7$, $1.4 < \phi < \pi$
$\Delta \eta = \Delta \phi \approx 0.014$
Cluster $E_T > 300$ MeV

Neutral constituent jets

$|\eta| < 0.9$, $0 < \phi < 2\pi$
ITS: Inner Tracking System (silicon)
TPC: Time Projection Chamber
Track $p_T > 150$ MeV/c
Charged constituent jets (jet^{ch})
Jet reconstruction in ALICE

EMCAL: Pb scintillator sampling calorimeter
$|\eta| < 0.7, 1.4 < \phi < \pi$
$\Delta \eta = \Delta \phi \approx 0.014$
Cluster $E_T > 300$ MeV

Neutral constituent jets

Full jet reconstruction
matching the neutral and charged constituents

$|\eta| < 0.9, 0 < \phi < 2\pi$
ITS: Inner Tracking System (silicon)
TPC: Time Projection Chamber
Track $p_T > 150$ MeV/c
Charged constituent jets (jet^{ch})
ALICE jet results in pp collisions at $\sqrt{s} = 2.76$ and 7 TeV
Good agreement between data and NLO calculations for both $R=0.2$ and $R=0.4$

Good agreement between data and NLO calculations for both $R=0.2$ and $R=0.4$

Better agreement for both the spectra and the jet profile if hadronization effects are taken into account in the calculations.
Good agreement between data and NLO calculations for both $R=0.2$ and $R=0.4$

Recent calculation based on NNLO+LL including UE and hadronization effects seems to be in better agreement than just NNLO calculations.

M. Dasgupta et al. JHEP 1606 (2016) 057
Jet shape definitions

- **Jet shapes** are observables constructed combining informations on how the variables of the constituents are distributed within the jet.

- Jet shapes can provide information about:
 - *parton-to-jet* fragmentation processes
 - *intra-jet distributions* (broadening, collimation)
 - possible *quark/gluon jet* differences
Jet shape definitions

- **Jet shapes** are observables constructed combining informations on how the variables of the constituents are distributed within the jet.

- Jet shapes can provide information about:
 - **parton-to-jet** fragmentation processes
 - **intra-jet distributions** (broadening, collimation)
 - possible **quark/gluon jet** differences

- **Momentum dispersion** ($p_T D$):
 - Measures the momentum redistribution of jet constituents.
 - Jets with fewer constituents have higher $p_T D$.
 - Different $p_T D$ expected for **quark/gluon** jets due to the different fragmentation

\[
p_T D = \frac{\sqrt{\sum_i p_{T,i}^2}}{\sum_i p_{T,i}}
\]
Jet shape definitions

- **Momentum dispersion ($p_T D$):**
 - Measures the momentum re-distribution of jet constituents.

- **Radial moment (g):**
 - Measures the momentum re-distribution of jet constituents weighted by their distance from the jet axis.

\[
g = \sum_{i \in \text{jet}} \frac{p_T^i}{p_T^{\text{jet}}} |r_i|
\]

- large $g \rightarrow$ more broadened jets
- **gluon** jets have more likely large g
- smaller $g \rightarrow$ more collimated jets
- **quark** jets have more likely smaller g
Jet shape definitions

- **Momentum dispersion ($p_T D$):**
 - Measures the momentum re-distribution of jet constituents.

- **Radial moment (g):**
 - Measures the momentum re-distribution of jet constituents weighted by their distance from the jet axis.

- **Transverse momentum difference of leading and subleading particles ($LeSub$):**
 - Transverse momentum difference of the hardest and second hardest constituents of the jet.
 - Jet shape not IRC safe but essentially background invariant, interesting for Pb-Pb collisions.

\[
LeSub = p_{T, \text{leading track}} - p_{T, \text{subleading track}}
\]
Charged jet shapes

Jet shapes, fully corrected to charged particle level.
Jet shapes, fully corrected to charged particle level.

Reasonable agreement between data and PYTHIA calculations for all the jet shapes.

Use PYTHIA as reference for Pb-Pb

Important for low R where hadronisation effects start to play an important role.
ALICE jet results in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
Jet reconstruction in heavy-ion collisions

- Heavy-ion collisions characterized by:
 - high multiplicity of low-p_T particles
 - not related to hard scattering, coming mainly from soft medium interactions

- Jet background:
 - is dominant at low jet and jet constituent p_T
 - depends on the track multiplicity in the event
 - increases with R^2
Jet reconstruction in heavy-ion collisions

- Heavy-ion collisions characterized by:
 - high multiplicity of low-\(p_T\) particles
 - not related to hard scattering, coming mainly from soft medium interactions

- Jet background:
 - is dominant at low jet and jet constituent \(p_T\).
 - depends on the track multiplicity in the event.
 - increases with \(R^2\).

- Average background density \((\rho_{ch})\) estimated as:
 \[
 \rho_{ch} = \text{median}\left\{ \frac{p_{T,k\text{jet}}^{ch}}{A_{k\text{jet}}} \right\}
 \]
 - determined event-by-event.

- Correction applied to each jet in the event:
 \[
 p_T^{\text{jet}} = p_T^{\text{jet,rec}} - \rho \times A_{\text{jet,rec}}
 \]
Jet shapes background subtraction

- Average background removal for jet shapes based on recent techniques:
Jet shapes background subtraction

- Average background removal for jet shapes based on recent techniques:
 - Derivatives subtraction
 - Constituent subtraction
 - P. Berta et al, JHEP 1406 (2014) 092

- **PYTHIA detector level** jets embedded in Pb-Pb events.

![Graph showing dN/dg](image-url)
Jet shapes background subtraction

- Average background removal for jet shapes based on recent techniques:
 - Derivatives subtraction
 - Constituent subtraction
 P. Berta et al, JHEP 1406 (2014) 092

- **PYTHIA detector level** jets embedded in Pb-Pb events.
- Shape distributions are modified by the high background
Jet shapes background subtraction

- Average background removal for jet shapes based on recent techniques:
 - Derivatives subtraction
 - Constituent subtraction
 - P. Berta et al, JHEP 1406 (2014) 092

- **PYTHIA detector level** jets embedded in Pb-Pb events.
 - Shape distributions are modified by the high background

- Subtraction methods (area based, constituent based) reduce the influence of the background on the shapes.
Jet shapes background subtraction

- Average background removal for jet shapes based on recent techniques:
 - Constituent subtraction P. Berta et al, JHEP 1406 (2014) 092

- **PYTHIA detector level** jets embedded in Pb-Pb events.
 - Shape distributions are modified by the high background

- Subtraction methods (area based, constituent based) reduce the influence of the background on the shapes.

- Residual difference between **PYTHIA detector level** jet shapes and **PYTHIA embedded subtracted** ones due to background fluctuations.

2D Bayesian Unfolding applied to remove background fluctuations and detector effects.
The **full jet** R_{AA} shows a suppression also at high jet p_T for $R=0.2$.

$$R_{AA} = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{d^2 N_{\text{ch, jet}}/dp_T d\eta|_{\text{Pb-Pb}}}{d^2 N_{\text{ch, jet}}/dp_T d\eta|_{\text{pp}}}$$
The **full jet** R_{AA} shows a suppression also at high jet p_T for $R=0.2$.

$$R_{AA} = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{\frac{d^2 N_{\text{ch}, jet}}{dp_T d\eta}|_{\text{Pb-Pb}}}{\frac{d^2 N_{\text{ch}, jet}}{dp_T d\eta}|_{\text{pp}}}$$

Energy lost from the interaction of the parton within the medium not recovered within $R=0.3$.

R_{AA} not precise enough to distinguish between the two models

JEWEL: C.Zapp et al. JHEP 1303 (2013) 080
Charged jet shapes

Focus on jet shapes to:
- to probe quenching at low jet p_T.
- using small R jets ($R=0.2$)
Charged jet shapes

- Focus on jet shapes to:
 - to probe quenching at low jet p_T.
 - using small R jets ($R=0.2$)

- $p_T D$ shifted to higher values in Pb-Pb collisions relative to PYTHIA Perugia11
Charged jet shapes

- Focus on jet shapes to:
 - to probe quenching at low jet p_T.
 - using small R jets ($R=0.2$)

- p_TD shifted to higher values in Pb-Pb collisions relative to PYTHIA Perugia11

- g shifted to lower values in Pb-Pb collisions relative to PYTHIA Perugia11
Charged jet shapes

- Focus on jet shapes to:
 - to probe quenching at low jet p_T.
 - using small R jets ($R=0.2$)

- p_T^{D} shifted to higher values in Pb-Pb collisions relative to PYTHIA Perugia11

- g shifted to lower values in Pb-Pb collisions relative to PYTHIA Perugia11

- p_T^{D} and g distributions for $R=0.2$ jets are compatible with a more collimated and harder fragmentation in Pb-Pb than pp collisions.
Charged jet shapes

- Focus on jet shapes to:
 - to probe quenching at low jet p_T.
 - using small R jets ($R=0.2$)

- p_TD shifted to higher values in Pb-Pb collisions relative to PYTHIA Perugia11

- g shifted to lower values in Pb-Pb collisions relative to PYTHIA Perugia11

- $LeSub$ in fair agreement with PYTHIA Perugia 11
The different fragmentation observed in Pb-Pb collisions for $R=0.2$ jets is qualitatively described by JEWEL model. C. Zapp et al., JHEP 1303 (2013) 080

- JEWEL collimates the jets since the soft particles are emitted at large angles.
- Results are in qualitative agreement for both $p_T D$ and g
Charged jet shapes: comparison with models

Qualitative comparison with quark/gluon jets at the same energy:
- gluon jets: quenched jets with intrajet broadening,
- quark jets: quenched jets without intrajet broadening.

Results seem to be closer to quark-like jet fragmentation.
Conclusions

- Jet shapes in pp collisions show a fair agreement with PYTHIA Tune Perugia 11
- More differential studies (R, p_T^{jet}) ongoing.
- Input from theory needed to compare with different MC (including hadronization, UE effects...)

Conclusions

- Jet shapes in pp collisions show a fair agreement with PYTHIA Tune Perugia 11
- More differential studies (R, p_T^{jet}) ongoing.
- Input from theory needed to compare with different MC (including hadronization, UE effects…)

- Measurements of jet shapes in Pb-Pb collisions:
 - allow to **study modification of intra-jet particle distribution** by QGP
 - indicate that small R jets ($R = 0.2$) are more collimated and fragment harder than PYTHIA pp reference.
 - indicate a **qualitative agreement with quark-like jet fragmentation** and are in agreement with JEWEL jet quenching model.
Back up slides
Reasonable agreement between data and MC calculations for all resolution parameters.

PYTHIA Perugia-2011 tends to better reproduce the results at high-p_T^{jet}.

HERWIG seems to be more in agreement in the low jet p_T region.
ALICE jet results in Pb-Pb collisions

\[R_{CP} = \frac{1}{\langle T_{AA} \rangle N_{evt}} \frac{1}{d^2 N_{ch\ jet}} \frac{d^2 N_{ch\ jet}}{dp_{T, ch\ jet} d\eta_{ch\ jet}} \bigg|_{central} \]

1. The **charged jet** \(R_{CP} \) shows a decreasing trend as a function of the collision centrality\(^(*)\) for \(R=0.3 \).

\(^{*}\)Centrality: quantity used to determine the overlap region of the two colliding nuclei. Events are classified in centrality classes in terms of the percentiles of the total A-A-A cross section.
Exploiting the h-jet coincidence measurement it is possible to suppress the combinatorial background effects and explore larger jet radii.

No significant medium-induced modification of intra-jet energy distribution for $R \leq 0.5$ is observed.
Jet shape distributions PYTHIA Perugia 11

ALICE Simulation
PYTHIA Perugia 11
pp √s = 7 TeV
Anti-kt charged jets, R = 0.2
40 < p_T^{jet,ch} < 60 GeV/c
√s dependence of jet shapes PYTHIA Perugia 11

Not negligible difference in the jet shapes due to due to q/g difference fraction at two collider energies.
Tracking efficiency. Variation of ±4% dominate the jet energy scale uncertainty.

Unfolding:
- Regularization: variations of ±3 iterations in the procedure.
- Truncation: difference to measured yield at a 10 GeV lower value than default one.
- Prior: Variation of 20% between p_T^{part} and shape$^{\text{part}}$. Default value PYTHIA Perugia 0.
- Background subtraction: two different methods used to estimate the background.
If the jet would lose energy as a whole (single emitter) then we would expect Pb-Pb shapes to be in agreement with vacuum shape at higher-p_T.

The radial moment seems to show this behavior.

p_TD does not, but it has a milder dependence on the transverse momentum.